hdu-3790 最短路径问题(双重权值)

时间:2021-04-30 23:02:39

Problem Description

给你n个点,m条无向边,每条边都有长度d和花费p,给你起点s终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费最少的。

Input

输入n,m,点的编号是1~n,然后是m行,每行4个数 a,b,d,p,表示a和b之间有一条边,且其长度为d,花费为p。最后一行是两个数 s,t;起点s,终点。n和m为0时输入结束。
(1<n<=1000, 0<m<100000, s != t)

Output

输出 一行有两个数, 最短距离及其花费。

Sample Input

3 2 1 2 5 6 2 3 4 5 1 3 0 0

Sample Output

9 11

再加一组测试数据:

Sample Input

5 7

1 2 5 5

2 3 4 5

1 3 4 6

3 4 2 2

3 5 4 7

4 5 2 4

1 3 4 4

1 5

Sample Output

8 10

 #include <stdio.h>
#include <string.h> #define MAX 1005
#define INF 200000000 struct Route //路线结构体(包括距离和花费)
{
int dis;
int fare;
}; void dijkstra(struct Route map[][MAX],int dist[],int value[],int start,int end)
{
int s[MAX]; //集合,用于存放已找出的顶点
int u;
int minDis;
int minVal;
int i,j;
memset(s,,sizeof(s));
s[start] = ; //将起点放入集合
for (i=; i<MAX; i++)
{
//初始化dist和value
dist[i] = map[start][i].dis;
value[i] = map[start][i].fare;
}
//将起点的dist和value置为0
dist[start] = ;
value[start] = ;
while ()
{
u = start;
minDis = INF;
minVal = INF;
for (i=; i<MAX; i++)
{
if (dist[i]<minDis&&!s[i]) //找出距起点最近的点
{
minVal = value[i];
minDis = dist[i];
u = i;
}
else if (dist[i]==minDis&&!s[i]&&value[i]<minVal) //如果距离相等,则选择花费最少的
{
minVal = value[i];
minDis = dist[i];
u = i;
}
}
s[u] = ;
if (s[end]==) //当找出终点就结束
return;
for (i=; i<MAX; i++) //利用找出的点更新其它点到起点的距离和花费
{
if (!s[i]&&dist[i]>map[u][i].dis+dist[u])
{
dist[i] = map[u][i].dis+dist[u];
value[i] = map[u][i].fare+value[u];
}
else if (!s[i]&&dist[i]==map[u][i].dis+dist[u]) //如果距离相等,则选择花费最少的
if (value[i] > map[u][i].fare+value[u])
{
dist[i] = map[u][i].dis+dist[u];
value[i] = map[u][i].fare+value[u];
}
}
}
} int main()
{
struct Route map[MAX][MAX]; //地图的邻接矩阵
int dist[MAX]; //存放起点到各点的距离
int value[MAX]; //存放起点到各点的花费
//int pre[MAX];
int n,m; //n个点,m条边
int a,b,d,p;
int s,t; //起点,终点
int i,j;
while ()
{
scanf("%d%d",&n,&m);
if (n==&&m==)
break;
for (i=; i<=n; i++)
for (j=; j<MAX; j++)
{
map[i][j].dis = INF;
map[i][j].fare = INF;
}
for (i=; i<MAX; i++)
{
dist[i] = INF;
value[i] = INF;
}
for (i=; i<=m; i++) //将邻接矩阵初始化
{
scanf("%d%d%d%d",&a,&b,&d,&p);
if (d < map[a][b].dis)
{
//如果两点间有重边,则选出最短距离
map[a][b].dis = map[b][a].dis = d;
map[a][b].fare = map[b][a].fare = p;
}
else if (d == map[a][b].dis&&p < map[a][b].fare)
{
//重边距离相等,则选出花费最少的
map[a][b].dis = map[b][a].dis = d;
map[a][b].fare = map[b][a].fare = p;
}
}
scanf("%d%d",&s,&t);
dijkstra(map,dist,value,s,t);
printf("%d %d\n",dist[t],value[t]);
}
return ;
}