I have some data in the form:
我有一些表格中的数据:
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11
1. 14342667 4336 1.5 2015-10-03 \\N 2015-10-03 804 2.0 2.0 0 3.0
2. 14342667 4336 0.8 2015-06-13 \\N 2015-06-11 2912 2.0 2.0 0 \\N
3. 14342667 4336 0.5 2016-01-02 \\N 2015-12-27 1618 0.0 0.0 1 \\N
4. 14342667 4336 0.7 2015-08-22 \\N 2015-08-22 1780 2.0 2.0 0 \\N
5. 14342667 4336 0.9 2015-02-21 1.2 2015-02-17 1548 0.0 0.0 1 \\N
6. 14342667 4336 1.0 2015-08-08 \\N 2015-08-06 1538 2.0 2.0 0 2.25
7. 14342667 4336 0.9 2015-03-28 \\N 2015-03-24 2129 7.0 7.0 0 \\N
8. 14342667 4336 0.8 2015-04-11 \\N 2015-04-11 2316 1.0 2.0 0 \\N
I want to replace instances of \\N
with NA using R and data.table. I got these in places of blank when I sqooped data into HIVE.
我想用R和data.table来替换N的实例。当我把数据整理成蜂箱时,我把它们放在空白的地方。
I have tried things like data1 <- data1[, lapply(.SD, recode, '"\\N"=NA')]
and data1 <- data1[, lapply(.SD, recode, '"\N"=NA')]
using CAR package which works well for other replacements but failing in the current case with error:
我尝试过data1 <- data1[, lapply(。SD,重新编码,“\ \ N”= NA)]和data1 <——data1、拉普兰人(。使用汽车包装,对其他替代产品效果良好,但在当前的情况下失败:
Error in FUN(X[[1L]], ...) : in recode term: "\N"=NA message: Error : '\N' is an unrecognized escape in character string starting ""\N"
错误,有趣(X[[1L]],…):in recode term:“\N”=NA message:“\N”是一个未被识别的字符串,从字符串开始“\N”。
I have also read solutions like x[x=="\\N"] <- NA
but I couldn't lapply those successfully using data.table. I have also looked into HIVE table side solution but apparently regexp_replace
works only for one column not for all instances in all columns.
我也读过像x[x= "\\N"] <- NA的解决方案,但我不能用数据表来成功地应用这些解决方案。我还研究了HIVE table端解决方案,但显然regexp_replace只适用于一个列,而不是所有列中的所有实例。
3 个解决方案
#1
4
We can find out the columns that have this pattern with grep
and then use as.numeric
on those columns
我们可以找到与grep有这种模式的列,然后使用as。数字的列
library(data.table)
nm1 <- names(df1)[colSums(sapply(df1, grepl, pattern = "\\\\"))!=0]
setDT(df1)[,(nm1):= lapply(.SD, as.numeric) , .SDcols= nm1]
df1
# V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11
#1: 14342667 4336 1.5 2015-10-03 NA 2015-10-03 804 2 2 0 3.00
#2: 14342667 4336 0.8 2015-06-13 NA 2015-06-11 2912 2 2 0 NA
#3: 14342667 4336 0.5 2016-01-02 NA 2015-12-27 1618 0 0 1 NA
#4: 14342667 4336 0.7 2015-08-22 NA 2015-08-22 1780 2 2 0 NA
#5: 14342667 4336 0.9 2015-02-21 1.2 2015-02-17 1548 0 0 1 NA
#6: 14342667 4336 1.0 2015-08-08 NA 2015-08-06 1538 2 2 0 2.25
#7: 14342667 4336 0.9 2015-03-28 NA 2015-03-24 2129 7 7 0 NA
#8: 14342667 4336 0.8 2015-04-11 NA 2015-04-11 2316 1 2 0 NA
data
df1 <- structure(list(V1 = c(14342667L, 14342667L, 14342667L, 14342667L,
14342667L, 14342667L, 14342667L, 14342667L), V2 = c(4336L, 4336L,
4336L, 4336L, 4336L, 4336L, 4336L, 4336L), V3 = c(1.5, 0.8, 0.5,
0.7, 0.9, 1, 0.9, 0.8), V4 = c("2015-10-03", "2015-06-13", "2016-01-02",
"2015-08-22", "2015-02-21", "2015-08-08", "2015-03-28", "2015-04-11"
), V5 = c("\\\\N", "\\\\N", "\\\\N", "\\\\N", "1.2", "\\\\N",
"\\\\N", "\\\\N"), V6 = c("2015-10-03", "2015-06-11", "2015-12-27",
"2015-08-22", "2015-02-17", "2015-08-06", "2015-03-24", "2015-04-11"
), V7 = c(804L, 2912L, 1618L, 1780L, 1548L, 1538L, 2129L, 2316L
), V8 = c(2, 2, 0, 2, 0, 2, 7, 1), V9 = c(2, 2, 0, 2, 0, 2, 7,
2), V10 = c(0L, 0L, 1L, 0L, 1L, 0L, 0L, 0L), V11 = c("3.0", "\\\\N",
"\\\\N", "\\\\N", "\\\\N", "2.25", "\\\\N", "\\\\N")), .Names = c("V1",
"V2", "V3", "V4", "V5", "V6", "V7", "V8", "V9", "V10", "V11"),
class = "data.frame", row.names = c("1.",
"2.", "3.", "4.", "5.", "6.", "7.", "8."))
#2
2
At @akrun's suggestion, here is another simple way:
在@akrun的建议中,还有一个简单的方法:
ccols = which(sapply(DF, class) == "character")
DF[ccols] <- lapply(DF[ccols], type.convert, na.strings="\\\\N")
Use str(DF)
to see that the columns are whatever they should be (numeric or integer).
使用str(DF)可以看到这些列是它们应该的(数字或整数)。
With data.table, this would look like
与数据。表格,看起来是这样的。
library(data.table)
setDT(DF)
ccols = which(sapply(DF, class) == "character")
DF[, (ccols) := lapply(.SD, type.convert, na.strings="\\\\N"), .SDcols=ccols]
#3
0
NULL
is in Hive inside HDFS looks like //N
so one can use function nvl()
for replacement as well if looking for HIVE side solution.
在HDFS内部的Hive中,NULL看起来像//N,所以可以使用函数nvl()来替换,如果寻找蜂巢边解决方案。
#1
4
We can find out the columns that have this pattern with grep
and then use as.numeric
on those columns
我们可以找到与grep有这种模式的列,然后使用as。数字的列
library(data.table)
nm1 <- names(df1)[colSums(sapply(df1, grepl, pattern = "\\\\"))!=0]
setDT(df1)[,(nm1):= lapply(.SD, as.numeric) , .SDcols= nm1]
df1
# V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11
#1: 14342667 4336 1.5 2015-10-03 NA 2015-10-03 804 2 2 0 3.00
#2: 14342667 4336 0.8 2015-06-13 NA 2015-06-11 2912 2 2 0 NA
#3: 14342667 4336 0.5 2016-01-02 NA 2015-12-27 1618 0 0 1 NA
#4: 14342667 4336 0.7 2015-08-22 NA 2015-08-22 1780 2 2 0 NA
#5: 14342667 4336 0.9 2015-02-21 1.2 2015-02-17 1548 0 0 1 NA
#6: 14342667 4336 1.0 2015-08-08 NA 2015-08-06 1538 2 2 0 2.25
#7: 14342667 4336 0.9 2015-03-28 NA 2015-03-24 2129 7 7 0 NA
#8: 14342667 4336 0.8 2015-04-11 NA 2015-04-11 2316 1 2 0 NA
data
df1 <- structure(list(V1 = c(14342667L, 14342667L, 14342667L, 14342667L,
14342667L, 14342667L, 14342667L, 14342667L), V2 = c(4336L, 4336L,
4336L, 4336L, 4336L, 4336L, 4336L, 4336L), V3 = c(1.5, 0.8, 0.5,
0.7, 0.9, 1, 0.9, 0.8), V4 = c("2015-10-03", "2015-06-13", "2016-01-02",
"2015-08-22", "2015-02-21", "2015-08-08", "2015-03-28", "2015-04-11"
), V5 = c("\\\\N", "\\\\N", "\\\\N", "\\\\N", "1.2", "\\\\N",
"\\\\N", "\\\\N"), V6 = c("2015-10-03", "2015-06-11", "2015-12-27",
"2015-08-22", "2015-02-17", "2015-08-06", "2015-03-24", "2015-04-11"
), V7 = c(804L, 2912L, 1618L, 1780L, 1548L, 1538L, 2129L, 2316L
), V8 = c(2, 2, 0, 2, 0, 2, 7, 1), V9 = c(2, 2, 0, 2, 0, 2, 7,
2), V10 = c(0L, 0L, 1L, 0L, 1L, 0L, 0L, 0L), V11 = c("3.0", "\\\\N",
"\\\\N", "\\\\N", "\\\\N", "2.25", "\\\\N", "\\\\N")), .Names = c("V1",
"V2", "V3", "V4", "V5", "V6", "V7", "V8", "V9", "V10", "V11"),
class = "data.frame", row.names = c("1.",
"2.", "3.", "4.", "5.", "6.", "7.", "8."))
#2
2
At @akrun's suggestion, here is another simple way:
在@akrun的建议中,还有一个简单的方法:
ccols = which(sapply(DF, class) == "character")
DF[ccols] <- lapply(DF[ccols], type.convert, na.strings="\\\\N")
Use str(DF)
to see that the columns are whatever they should be (numeric or integer).
使用str(DF)可以看到这些列是它们应该的(数字或整数)。
With data.table, this would look like
与数据。表格,看起来是这样的。
library(data.table)
setDT(DF)
ccols = which(sapply(DF, class) == "character")
DF[, (ccols) := lapply(.SD, type.convert, na.strings="\\\\N"), .SDcols=ccols]
#3
0
NULL
is in Hive inside HDFS looks like //N
so one can use function nvl()
for replacement as well if looking for HIVE side solution.
在HDFS内部的Hive中,NULL看起来像//N,所以可以使用函数nvl()来替换,如果寻找蜂巢边解决方案。