I frequently use kernel density plots to illustrate distributions. These are easy and fast to create in R like so:
我经常使用内核密度图来说明分布。这些在R中创建起来既简单又快速:
set.seed(1)
draws <- rnorm(100)^2
dens <- density(draws)
plot(dens)
#or in one line like this: plot(density(rnorm(100)^2))
Which gives me this nice little PDF:
这给了我一个很好的PDF:
I'd like to shade the area under the PDF from the 75th to 95th percentiles. It's easy to calculate the points using the quantile
function:
我想把PDF下面的区域从第75到第95百分位数进行阴影处理。用分位数函数计算点很容易:
q75 <- quantile(draws, .75)
q95 <- quantile(draws, .95)
But how do I shade the the area between q75
and q95
?
但是我如何在q75和q95之间的区域着色呢?
4 个解决方案
#1
71
With the polygon()
function, see its help page and I believe we had similar questions here too.
使用polygon()函数,请参阅它的帮助页面,我相信我们在这里也有类似的问题。
You need to find the index of the quantile values to get the actual (x,y)
pairs.
你需要找到分位数的索引来得到实际的(x,y)对。
Edit: Here you go:
编辑:给你:
x1 <- min(which(dens$x >= q75))
x2 <- max(which(dens$x < q95))
with(dens, polygon(x=c(x[c(x1,x1:x2,x2)]), y= c(0, y[x1:x2], 0), col="gray"))
Output (added by JDL)
添加的输出(金)
#2
66
Another solution:
另一个解决方案:
dd <- with(dens,data.frame(x,y))
library(ggplot2)
qplot(x,y,data=dd,geom="line")+
geom_ribbon(data=subset(dd,x>q75 & x<q95),aes(ymax=y),ymin=0,
fill="red",colour=NA,alpha=0.5)
Result:
结果:
#3
20
An expanded solution:
一个扩展的解决方案:
If you wanted to shade both tails (copy & paste of Dirk's code) and use known x values:
如果你想把两条尾巴都遮住(复制和粘贴Dirk代码),并使用已知的x值:
set.seed(1)
draws <- rnorm(100)^2
dens <- density(draws)
plot(dens)
q2 <- 2
q65 <- 6.5
qn08 <- -0.8
qn02 <- -0.2
x1 <- min(which(dens$x >= q2))
x2 <- max(which(dens$x < q65))
x3 <- min(which(dens$x >= qn08))
x4 <- max(which(dens$x < qn02))
with(dens, polygon(x=c(x[c(x1,x1:x2,x2)]), y= c(0, y[x1:x2], 0), col="gray"))
with(dens, polygon(x=c(x[c(x3,x3:x4,x4)]), y= c(0, y[x3:x4], 0), col="gray"))
Result:
结果:
#4
17
This question needs a lattice
answer. Here's a very basic one, simply adapting the method employed by Dirk and others:
这个问题需要一个巧妙的答案。这里有一个非常基本的方法,简单地采用Dirk和其他人使用的方法:
#Set up the data
set.seed(1)
draws <- rnorm(100)^2
dens <- density(draws)
#Put in a simple data frame
d <- data.frame(x = dens$x, y = dens$y)
#Define a custom panel function;
# Options like color don't need to be hard coded
shadePanel <- function(x,y,shadeLims){
panel.lines(x,y)
m1 <- min(which(x >= shadeLims[1]))
m2 <- max(which(x <= shadeLims[2]))
tmp <- data.frame(x1 = x[c(m1,m1:m2,m2)], y1 = c(0,y[m1:m2],0))
panel.polygon(tmp$x1,tmp$y1,col = "blue")
}
#Plot
xyplot(y~x,data = d, panel = shadePanel, shadeLims = c(1,3))
#1
71
With the polygon()
function, see its help page and I believe we had similar questions here too.
使用polygon()函数,请参阅它的帮助页面,我相信我们在这里也有类似的问题。
You need to find the index of the quantile values to get the actual (x,y)
pairs.
你需要找到分位数的索引来得到实际的(x,y)对。
Edit: Here you go:
编辑:给你:
x1 <- min(which(dens$x >= q75))
x2 <- max(which(dens$x < q95))
with(dens, polygon(x=c(x[c(x1,x1:x2,x2)]), y= c(0, y[x1:x2], 0), col="gray"))
Output (added by JDL)
添加的输出(金)
#2
66
Another solution:
另一个解决方案:
dd <- with(dens,data.frame(x,y))
library(ggplot2)
qplot(x,y,data=dd,geom="line")+
geom_ribbon(data=subset(dd,x>q75 & x<q95),aes(ymax=y),ymin=0,
fill="red",colour=NA,alpha=0.5)
Result:
结果:
#3
20
An expanded solution:
一个扩展的解决方案:
If you wanted to shade both tails (copy & paste of Dirk's code) and use known x values:
如果你想把两条尾巴都遮住(复制和粘贴Dirk代码),并使用已知的x值:
set.seed(1)
draws <- rnorm(100)^2
dens <- density(draws)
plot(dens)
q2 <- 2
q65 <- 6.5
qn08 <- -0.8
qn02 <- -0.2
x1 <- min(which(dens$x >= q2))
x2 <- max(which(dens$x < q65))
x3 <- min(which(dens$x >= qn08))
x4 <- max(which(dens$x < qn02))
with(dens, polygon(x=c(x[c(x1,x1:x2,x2)]), y= c(0, y[x1:x2], 0), col="gray"))
with(dens, polygon(x=c(x[c(x3,x3:x4,x4)]), y= c(0, y[x3:x4], 0), col="gray"))
Result:
结果:
#4
17
This question needs a lattice
answer. Here's a very basic one, simply adapting the method employed by Dirk and others:
这个问题需要一个巧妙的答案。这里有一个非常基本的方法,简单地采用Dirk和其他人使用的方法:
#Set up the data
set.seed(1)
draws <- rnorm(100)^2
dens <- density(draws)
#Put in a simple data frame
d <- data.frame(x = dens$x, y = dens$y)
#Define a custom panel function;
# Options like color don't need to be hard coded
shadePanel <- function(x,y,shadeLims){
panel.lines(x,y)
m1 <- min(which(x >= shadeLims[1]))
m2 <- max(which(x <= shadeLims[2]))
tmp <- data.frame(x1 = x[c(m1,m1:m2,m2)], y1 = c(0,y[m1:m2],0))
panel.polygon(tmp$x1,tmp$y1,col = "blue")
}
#Plot
xyplot(y~x,data = d, panel = shadePanel, shadeLims = c(1,3))