NumPy基础练习(练一遍搞定NumPy)

时间:2022-01-13 22:43:36
import numpy as np
import pandas as pd
from numpy import random
from numpy.random import randn #######生成矩阵################ # #将列表放入Numpy数组
# data=[2,3,4,5]
# arr=np.array(data)
# print(arr) # #创建二维矩阵
# data=[[1,2,3],[7,8,9]]
# arr=np.array(data)
# print(arr) # #输出arr的数据类型
# data=[2,3,4,5]
# arr=np.array(data)
# print(arr.dtype) #打印输出8*4的二维矩阵
# a=np.empty([8,4])
# print(a) # #输出2*3*2的三维矩阵
# arr=np.empty([2,3,2])
# print(arr) # #输出2*4的矩阵
# a=np.empty([2,4])
# for i in range(2):
# a[i]=i
# print(a) # #输出两个2*4的矩阵
# a=np.empty([2,4])
# for i in range(2):
# a[i]=i
# print(a) # #二维矩阵
# a=[[2,1,4,6]]
# print(a) # #输出2*2的矩阵,指定数据类型
# arr=np.array([2,2],dtype='int32')
# print(arr) # #表示在【0-31】这32个数字中分成8行4列
# arr=np.arange(32).reshape((8,4))
# print(arr) # #输出 0-9
# print(np.arange(10)) # #在1和2之间(包括1和2)分成等值的3份输出,结果:[ 1. 1.5 2. ]
# print(np.linspace(1,2,3)) # #输出行列都为9的单位矩阵
# print(np.eye(9)) # #输出全为0的一维矩阵
# print(np.zeros([3])) # #输出均为0的4维矩阵,参数分别为维度,即第一,二,三,四维
# print(np.zeros([2,2,2,2])) # #分别输出1.0,1.5,2.0
# for x in np.linspace(1,2,3):
# print(x) # #输出2*4的二维矩阵
# print(np.random.rand(2,4)) ##2*2的矩阵
# a=np.random.rand(4).reshape(2,2)
# print(a) # #输出1-10之间随机的4个整数
# print(np.random.randint(1,10,4)) # ################索引和切片##########
# #输出1,2
# arr=np.arange(10)
# print(arr[1:3]) # #将第5个到第7个改为12
# arr=np.arange(10)
# arr[5:8]=12
# print(arr) # #将第5个数之后全都改成10
# arr=np.arange(10)
# arr[5:]=10
# print(arr) # #将arr切分成二维矩阵看,将arr[6]改成1514
# arr=np.arange(10)
# a=arr[5:8]
# a[1]=1514
# print(arr) # #想一下这个是什么意思呢
# arr=np.arange(10)
# a=arr[5:8]
# a[:]=1514
# print(arr) #copy和'='的区别
# arr=np.arange(10)
# print("arr:",arr)
# b=arr.copy()
# print("b.copy:",b)
# b[2]=100
# print("after change:",b)
# print("arr:",arr) # arr=np.arange(10)
# print("arr:",arr)
# c=arr
# print("copy",c)
# c[2]=100
# print("after copy",c)
# print("arr:",arr)
#copy是复制一份,而'='是视图 #[,]和[][]是相同的
# arr=np.array([[1,2,3],[4,5,6]])
# print(arr[1,1])
# print(arr[1][1]) #axis 0 1
#0表示从行看,1表示从列看 #二维切片索引 # #输出第1行
# arr=np.arange(1,10).reshape(3,3)
# print(arr[:1]) # #输出2,3行
# arr=np.arange(1,10).reshape(3,3)
# print(arr[1:]) # #输出第一行第一个
# arr=np.arange(1,10).reshape(3,3)
# print(arr[:1,:1]) # #输出所有行和2,3列
# arr=np.arange(1,10).reshape(3,3)
# print(arr[:,1:]) #规律:[:]指全部二维矩阵 [:2]指[0,2)的行 # print(np.zeros([3,3]))
# print(np.zeros([10]).max())
# print(np.empty([2,3,2],dtype='int32').max())
# print(np.arange(9).reshape(3,3)[:2,1:])
# a=np.arange(12).reshape([3,4]) # a=np.reshape(a,[4,3])
# print(a) #############转置############ #转置,相乘
# t=np.arange(9).reshape([3,3]).T
# t1=np.arange(1,10,1).reshape([3,3])
# print(t.dot(t1)) #乘
# lst1=np.array([1,2,3,4])
# lst2=np.array([10,20,30,40])
# print(lst1.reshape([2,2]))
# print(np.dot(lst1,lst2)) #这两个有什么区别?
# b=np.random.random([1*2])#[ 0.6778996 0.29006868]
# print(b)
# b=np.random.random([1]*2)#[[ 0.09265586]]
# print(b) ##reshape中的参数是维度
# ar=np.arange(16).reshape([2,2,4])
# print(ar)
# c=np.arange(16).reshape([2,2,4]) #三维矩阵转置
# c=np.arange(16).reshape([2,2,4])
# d=np.transpose(c,[1,0,2])
# e=c.T
# print(d)
# print(e) # #矩阵横向合并
# a1 = np.array([[1,2],[3,4]])
# a2 = np.array([[5,6],[7,8]])
# print(np.hstack([a1,a2])) # #矩阵纵向合并
# a1 = np.array([[1,2],[3,4]])
# a2 = np.array([[5,6],[7,8]])
# print(np.vstack([a1,a2])) ############函数###########
# #取指数函数
# print(np.exp([3,1])) # #接受两个一维数组,产生两个二维矩阵
# points=np.arange(-5,5,1)
# xs,ys=np.meshgrid(points,points)
# print(xs)
# print(ys) # ##where过滤条件
# #将正态分布a中元素大于0的改成1,小于0的改成-1
# a=randn(9).reshape([3,3])
# print(a)
# print(np.where(a>0,1,-1)) #文件保存
# arr=np.arange(10)
# np.save('abc',arr)
# print(np.load('abc.npy'))
# a=np.arange(1,10).reshape([3,3]) #转置和逆
# a=np.arange(10)
# b=a.T
# b=np.invert(a)#矩阵的逆 # #行相加,第二个等于第一个加第二个,依次类推
# a=np.array([[1,2,3],[4,5,6],[7,8,9]])
# print(a.cumsum(0)) # #列相加,第二个等于第一个加第二个,依次类推
# a=np.array([[1,2,3],[4,5,6],[7,8,9]])
# print(a.cumsum(0)) # #行累积
# a=np.array([[1,2,3],[4,5,6],[7,8,9]])
# print(a.cumprod(0)) # #列累积
# a=np.array([[1,2,3],[4,5,6],[7,8,9]])
# print(a.cumprod(1)) ##按行排序,从左到右依次增大
# arr=randn(5,3)
# arr.sort(1)
# print(arr) #随机漫步
# nsteps=1000
# draws=np.random.randint(0,2,size=nsteps)
# steps=np.where(draws>0,1,-1)
# walk=steps.cumsum()
# print(walk)
#-----------------------------------------------------------

下面是一些函数:

NumPy基础练习(练一遍搞定NumPy)NumPy基础练习(练一遍搞定NumPy)NumPy基础练习(练一遍搞定NumPy)NumPy基础练习(练一遍搞定NumPy)NumPy基础练习(练一遍搞定NumPy)NumPy基础练习(练一遍搞定NumPy)NumPy基础练习(练一遍搞定NumPy)NumPy基础练习(练一遍搞定NumPy)NumPy基础练习(练一遍搞定NumPy)NumPy基础练习(练一遍搞定NumPy)NumPy基础练习(练一遍搞定NumPy)NumPy基础练习(练一遍搞定NumPy)NumPy基础练习(练一遍搞定NumPy)