I am a cardiologist and love coding in R - i am having a real issue with sorting a data frame and i suspect the solution is really easy!
我是一名心脏科医生,喜欢在R中编码——我对数据框的排序有一个真正的问题,我怀疑这个解决方案真的很简单!
I have a data frame with summary values from multiple studies df$study. Most studies have only one summary value (df$summary). However as you can see Study A has three summary values (df$no.of.estimate). See below
我有一个数据框架,包含多个研究的总结价值。大多数研究只有一个汇总值(df$summary)。然而,正如您可以看到的,研究A有三个摘要值(df$no. estimate)。见下文
study <- c("E", "A", "F", "A", "B", "A", "C", "D")
no.of.estimate <- c(1, 2, 1, 3, 1, 1, 1, 1)
summary <- c(1, 2, 3, 5, 6 ,7 ,8 ,9)
df <- data.frame(study, no.of.estimate, summary)
So i want to sort the dataframe by df$summary
- which is easy. However, if each study has more than one estimate then i want to group these studies together and appear in order using the "no.of.estimates" column.
所以我想用df$summary对dataframe进行排序——这很简单。然而,如果每个研究都有不止一个估计,那么我想把这些研究放在一起,并使用“no.of.estimate”一栏来排序。
So essentially the desired output is
本质上,期望的输出是
study <- c("E", "A", "A", "A", "F", "B", "C", "D")
no.of.estimate <- c(1, 1, 2, 3, 1, 1, 1, 1)
summary <- c(1, 7, 2, 5, 3 ,6 ,8 ,9)
df <- data.frame(study, no.of.estimate, summary)
2 个解决方案
#1
2
You could try
你可以试试
library(dplyr)
df %>%
mutate(study=factor(study, levels=unique(study))) %>%
arrange(study,no.of.estimate)
# study no.of.estimate summary
#1 E 1 1
#2 A 1 7
#3 A 2 2
#4 A 3 5
#5 F 1 3
#6 B 1 6
#7 C 1 8
#8 D 1 9
Or a base R
approach
或者基R方法
df$study <- factor(df$study, levels=unique(df$study))
df[with(df, order(study, no.of.estimate)), ]
data
df <- structure(list(study = structure(c(5L, 1L, 6L, 1L, 2L, 1L, 3L,
4L), .Label = c("A", "B", "C", "D", "E", "F"), class = "factor"),
no.of.estimate = c(1, 2, 1, 3, 1, 1, 1, 1), summary = c(1,
2, 3, 5, 6, 7, 8, 9)), .Names = c("study", "no.of.estimate",
"summary"), row.names = c(NA, -8L), class = "data.frame")
The expected dataset is
预期的数据集
df1 <- structure(list(study = structure(c(5L, 1L, 1L, 1L, 6L, 2L, 3L,
4L), .Label = c("A", "B", "C", "D", "E", "F"), class = "factor"),
no.of.estimate = c(1, 1, 2, 3, 1, 1, 1, 1), summary = c(1,
7, 2, 5, 3, 6, 8, 9)), .Names = c("study", "no.of.estimate",
"summary"), row.names = c(NA, -8L), class = "data.frame")
#2
2
Here's my data.table
attempt while leaving your columns as is and creating a new index (though see my comment first). It's main advantage that you will update your data set by reference rather than creating new copies
这是我的数据。在保持列不变并创建新索引时尝试表(不过请先查看我的注释)。您将根据引用更新数据集,而不是创建新的副本,这是主要的优势
library(data.table)
setorder(setDT(df)[, indx := .GRP, study], indx, no.of.estimate)[]
# study no.of.estimate summary indx
# 1: E 1 1 1
# 2: A 1 7 2
# 3: A 2 2 2
# 4: A 3 5 2
# 5: F 1 3 3
# 6: B 1 6 4
# 7: C 1 8 5
# 8: D 1 9 6
#1
2
You could try
你可以试试
library(dplyr)
df %>%
mutate(study=factor(study, levels=unique(study))) %>%
arrange(study,no.of.estimate)
# study no.of.estimate summary
#1 E 1 1
#2 A 1 7
#3 A 2 2
#4 A 3 5
#5 F 1 3
#6 B 1 6
#7 C 1 8
#8 D 1 9
Or a base R
approach
或者基R方法
df$study <- factor(df$study, levels=unique(df$study))
df[with(df, order(study, no.of.estimate)), ]
data
df <- structure(list(study = structure(c(5L, 1L, 6L, 1L, 2L, 1L, 3L,
4L), .Label = c("A", "B", "C", "D", "E", "F"), class = "factor"),
no.of.estimate = c(1, 2, 1, 3, 1, 1, 1, 1), summary = c(1,
2, 3, 5, 6, 7, 8, 9)), .Names = c("study", "no.of.estimate",
"summary"), row.names = c(NA, -8L), class = "data.frame")
The expected dataset is
预期的数据集
df1 <- structure(list(study = structure(c(5L, 1L, 1L, 1L, 6L, 2L, 3L,
4L), .Label = c("A", "B", "C", "D", "E", "F"), class = "factor"),
no.of.estimate = c(1, 1, 2, 3, 1, 1, 1, 1), summary = c(1,
7, 2, 5, 3, 6, 8, 9)), .Names = c("study", "no.of.estimate",
"summary"), row.names = c(NA, -8L), class = "data.frame")
#2
2
Here's my data.table
attempt while leaving your columns as is and creating a new index (though see my comment first). It's main advantage that you will update your data set by reference rather than creating new copies
这是我的数据。在保持列不变并创建新索引时尝试表(不过请先查看我的注释)。您将根据引用更新数据集,而不是创建新的副本,这是主要的优势
library(data.table)
setorder(setDT(df)[, indx := .GRP, study], indx, no.of.estimate)[]
# study no.of.estimate summary indx
# 1: E 1 1 1
# 2: A 1 7 2
# 3: A 2 2 2
# 4: A 3 5 2
# 5: F 1 3 3
# 6: B 1 6 4
# 7: C 1 8 5
# 8: D 1 9 6