本文及后续文章,Redis版本均是v3.2.8
上篇文章《Redis 数据结构之dict》,我们对dict的结构有了大致的印象。此篇文章对dict是如何维护数据结构的做个详细的理解。
老规矩还是打开Redis的源码,文件dict.c
一、dict数据结构的维护
1、dictCreate - 创建一个新的哈希表
/* Reset a hash table already initialized with ht_init().
* NOTE: This function should only be called by ht_destroy(). */
static void _dictReset(dictht *ht)
{
ht->table = NULL;// hash table初始化
ht->size = 0;
ht->sizemask = 0;
ht->used = 0;
}
/* Create a new hash table */
dict *dictCreate(dictType *type,
void *privDataPtr)
{
dict *d = zmalloc(sizeof(*d)); // 分配内存
_dictInit(d,type,privDataPtr);// dict初始化
return d;
}
/* Initialize the hash table */
int _dictInit(dict *d, dictType *type,
void *privDataPtr)
{
_dictReset(&d->ht[0]);
_dictReset(&d->ht[1]);
d->type = type;
d->privdata = privDataPtr;
d->rehashidx = -1;
d->iterators = 0;
return DICT_OK;
}
从上述的代码中,可以看出dictCreate为dict的数据结构分配空间并为各个变量赋初值。其中两个哈希表ht[0]和ht[1]起始都没有分配空间,table指针都赋为NULL。这就说明要等第一个数据插入时才会真正分配空间。
2、dictFind - dict查找
dictEntry *dictFind(dict *d, const void *key)
{
dictEntry *he;
unsigned int h, idx, table;
if (d->ht[0].used + d->ht[1].used == 0) return NULL; /* dict is empty */
if (dictIsRehashing(d)) _dictRehashStep(d);
h = dictHashKey(d, key);
for (table = 0; table <= 1; table++) {
idx = h & d->ht[table].sizemask;
he = d->ht[table].table[idx];
while(he) {
if (key==he->key || dictCompareKeys(d, key, he->key))
return he;
he = he->next;
}
if (!dictIsRehashing(d)) return NULL;
}
return NULL;
}
从上述的代码中,dictFind主要是根据dict是否正在重哈希,进行如下操作:
如果当前正在重哈希,那么就调用_dictRehashStep(d)【稍后在详细看下实现】。
调用dictHashKey,计算key的哈希值
两层for循环,其实就是上面定义的两个hash table。首先在在第一个哈希表h[0]上查找,在table数组上定位到哈希值所对应的位置(通过哈希值与sizemask进行按位与计算),然后在对应的dictEntry链表上查找。在遍历dictEntry链表时,需要对key进行比较即调用dictCompareKeys(d, key, he->key),dictCompareKeys里面的实现会调用keyCompare。如果找到就返回该项。否则,进行下一步。
接下来判断是否正在重哈希,如果没有,那么在ht[0]上找的结果就是最终的结果(如果没有找到,就返回NULL);否则,执行第二次遍历即在ht[1]上查找,过程如ht[0]一致。
3、dictAdd和dictReplace - dict插入
/* Add an element to the target hash table */
int dictAdd(dict *d, void *key, void *val)
{
dictEntry *entry = dictAddRaw(d,key);
if (!entry) return DICT_ERR;
dictSetVal(d, entry, val);
return DICT_OK;
}
/* Low level add. This function adds the entry but instead of setting
* a value returns the dictEntry structure to the user, that will make
* sure to fill the value field as he wishes.
*
* This function is also directly exposed to the user API to be called
* mainly in order to store non-pointers inside the hash value, example:
*
* entry = dictAddRaw(dict,mykey);
* if (entry != NULL) dictSetSignedIntegerVal(entry,1000);
*
* Return values:
*
* If key already exists NULL is returned.
* If key was added, the hash entry is returned to be manipulated by the caller.
*/
dictEntry *dictAddRaw(dict *d, void *key)
{
int index;
dictEntry *entry;
dictht *ht;
if (dictIsRehashing(d)) _dictRehashStep(d);
/* Get the index of the new element, or -1 if
* the element already exists. */
if ((index = _dictKeyIndex(d, key)) == -1)
return NULL;
/* Allocate the memory and store the new entry.
* Insert the element in top, with the assumption that in a database
* system it is more likely that recently added entries are accessed
* more frequently. */
ht = dictIsRehashing(d) ? &d->ht[1] : &d->ht[0];
entry = zmalloc(sizeof(*entry));
entry->next = ht->table[index];//将新元素添加到桶中链表的头节点
ht->table[index] = entry;
ht->used++;
/* Set the hash entry fields. */
dictSetKey(d, entry, key);
return entry;
}
_dictKeyIndex
/* Returns the index of a free slot that can be populated with
* a hash entry for the given 'key'.
* If the key already exists, -1 is returned.
*
* Note that if we are in the process of rehashing the hash table, the
* index is always returned in the context of the second (new) hash table. */
static int _dictKeyIndex(dict *d, const void *key)
{
unsigned int h, idx, table;
dictEntry *he;
/* Expand the hash table if needed */
if (_dictExpandIfNeeded(d) == DICT_ERR)
return -1;
/* Compute the key hash value */
h = dictHashKey(d, key);
for (table = 0; table <= 1; table++) {
idx = h & d->ht[table].sizemask;
/* Search if this slot does not already contain the given key */
he = d->ht[table].table[idx];
while(he) {
if (key==he->key || dictCompareKeys(d, key, he->key))
return -1;
he = he->next;
}
if (!dictIsRehashing(d)) break;
}
return idx;
}
/* Add an element, discarding the old if the key already exists.
* Return 1 if the key was added from scratch, 0 if there was already an
* element with such key and dictReplace() just performed a value update
* operation. */
int dictReplace(dict *d, void *key, void *val)
{
dictEntry *entry, auxentry;
/* Try to add the element. If the key
* does not exists dictAdd will suceed. */
if (dictAdd(d, key, val) == DICT_OK)
return 1;
/* It already exists, get the entry */
entry = dictFind(d, key);
/* Set the new value and free the old one. Note that it is important
* to do that in this order, as the value may just be exactly the same
* as the previous one. In this context, think to reference counting,
* you want to increment (set), and then decrement (free), and not the
* reverse. */
auxentry = *entry;
dictSetVal(d, entry, val);
dictFreeVal(d, &auxentry);
return 0;
}
dictAdd和dictReplace都有插入的功能,它们又有何区别:
dictAdd插入新的一对key和value,如果key已经存在,则插入失败。
dictReplace是在dictAdd的基础上实现的。dictReplace也是插入一对key和value,不过在key存在的时候,它会更新value。这其实相当于两次查找过程dictFind。
从dictAdd和dictReplace的代码的注释,我们大致了解函数的实现过程和原理:
dictAdd和dictReplace也会调用_dictRehashStep(d),触发推进一步重哈希
如果正在重哈希中,则会把数据插入到ht[1],否则数据插入到ht[0]。
在对应bucket中插入数据的时候,数据总是插入dictEntry链表的头部,因为最近添加的数据更可能被访问的概率更频繁。
dictKeyIndex,可能会存在哈希表的内存扩展。_dictExpandIfNeeded(d),它将哈希表的长度扩展为原来的两倍。
_dictKeyIndex,在dict查找元素插入的位置。从代码中,看到ht[0]、ht[1]的遍历,如果不在重哈希过程中,它只查找ht[0];否则查找ht[0]和ht[1]。
4、dictDelete - dict删除
/* Search and remove an element */
static int dictGenericDelete(dict *d, const void *key, int nofree)
{
unsigned int h, idx;
dictEntry *he, *prevHe;
int table;
if (d->ht[0].size == 0) return DICT_ERR; /* d->ht[0].table is NULL */
if (dictIsRehashing(d)) _dictRehashStep(d);
h = dictHashKey(d, key);
for (table = 0; table <= 1; table++) {
idx = h & d->ht[table].sizemask;
he = d->ht[table].table[idx];
prevHe = NULL;
while(he) {
if (key==he->key || dictCompareKeys(d, key, he->key)) {
/* Unlink the element from the list */
if (prevHe)
prevHe->next = he->next;
else
d->ht[table].table[idx] = he->next;
if (!nofree) {
dictFreeKey(d, he);
dictFreeVal(d, he);
}
zfree(he);
d->ht[table].used--;
return DICT_OK;
}
prevHe = he;
he = he->next;
}
if (!dictIsRehashing(d)) break;
}
return DICT_ERR; /* not found */
}
int dictDelete(dict *ht, const void *key) {
return dictGenericDelete(ht,key,0);
}
int dictDeleteNoFree(dict *ht, const void *key) {
return dictGenericDelete(ht,key,1);
}
从dictDelete代码中,可以看到
dictDelete也会触发推进一步重哈希(_dictRehashStep)
如果当前不在重哈希过程中,它只在ht[0]中查找要删除的key;否则ht[0]和ht[1]它都要查找。
删除成功后会调用key和value的析构函数(keyDestructor和valDestructor)。
从dictCreate、dictFind、dictAdd\dictReplace、dictDelete代码中,看到这些函数中都有_dictRehashStep(d)函数的调用(将哈希推进一步)。此举的目的就将重哈希过程分散到各个查找、插入和删除操作中去了,而不是集中在某一个操作中一次性做完。
5、_dictRehashStep源码实现
/* This function performs just a step of rehashing, and only if there are
* no safe iterators bound to our hash table. When we have iterators in the
* middle of a rehashing we can't mess with the two hash tables otherwise
* some element can be missed or duplicated.
*
* This function is called by common lookup or update operations in the
* dictionary so that the hash table automatically migrates from H1 to H2
* while it is actively used. */
static void _dictRehashStep(dict *d) {
if (d->iterators == 0) dictRehash(d,1);
}
/* Performs N steps of incremental rehashing. Returns 1 if there are still
* keys to move from the old to the new hash table, otherwise 0 is returned.
*
* Note that a rehashing step consists in moving a bucket (that may have more
* than one key as we use chaining) from the old to the new hash table, however
* since part of the hash table may be composed of empty spaces, it is not
* guaranteed that this function will rehash even a single bucket, since it
* will visit at max N*10 empty buckets in total, otherwise the amount of
* work it does would be unbound and the function may block for a long time. */
int dictRehash(dict *d, int n) {
int empty_visits = n*10; /* Max number of empty buckets to visit. */
if (!dictIsRehashing(d)) return 0;
while(n-- && d->ht[0].used != 0) {
dictEntry *de, *nextde;
/* Note that rehashidx can't overflow as we are sure there are more
* elements because ht[0].used != 0 */
assert(d->ht[0].size > (unsigned long)d->rehashidx);
while(d->ht[0].table[d->rehashidx] == NULL) {//跳过数组中为空的桶
d->rehashidx++;
if (--empty_visits == 0) return 1;//如果访问空桶次数超过限制,则直接返回
}
de = d->ht[0].table[d->rehashidx];//ht[0]中正在rehash的桶元素的头节点
/* Move all the keys in this bucket from the old to the new hash HT */
while(de) {
unsigned int h;
nextde = de->next;
/* Get the index in the new hash table */
h = dictHashKey(d, de->key) & d->ht[1].sizemask;//计算ht[0]中元素进行rehash后在ht[1]中的索引
de->next = d->ht[1].table[h];//并插入到链表的头部
d->ht[1].table[h] = de;
d->ht[0].used--;
d->ht[1].used++;
de = nextde;
}
d->ht[0].table[d->rehashidx] = NULL;
d->rehashidx++;//该桶处理完成后,准备处理下一个桶 }
}
/* Check if we already rehashed the whole table... */
//ht[0]剩余元素个数为0,表明ht[0]中的元素已经全部rehash到ht[1]中,因此rehash过程已经完成
if (d->ht[0].used == 0) {
zfree(d->ht[0].table);//可以释放ht[0],并将ht[1]赋给ht[0]后重置ht[1]
d->ht[0] = d->ht[1];
_dictReset(&d->ht[1]);
d->rehashidx = -1;//表明rehash已经结束
return 0;
}
/* More to rehash... */
return 1;//否则还处于rehash过程中
}
_dictRehashStep,可以理解为增量式重哈希。
dictRehash每次将重哈希至少向前推进N步(除非不到N步整个重哈希就结束了),每一步都将ht[0]上某一个bucket(即一个dictEntry链表)上的每一个dictEntry移动到ht[1]上,它在ht[1]上的新位置根据ht[1]的sizemask进行重新计算。rehashidx记录了当前尚未迁移(有待迁移)的ht[0]的bucket位置。
如果dictRehash被调用的时候,rehashidx指向的bucket里一个dictEntry也没有,那么它就没有可迁移的数据。这时它尝试在ht[0].table数组中不断向后遍历,直到找到下一个存有数据的bucket位置。如果一直找不到,则最多走N*10步,本次重哈希暂告结束。
最后,如果ht[0]上的数据都迁移到ht[1]上了(即d->ht[0].used == 0),那么整个重哈希结束,ht[0]变成ht[1]的内容,而ht[1]重置为空。
对于重哈希过程的分析,正如上篇文章对dict结构图中所展示的正是rehashidx=2时的情况,前面两个bucket(ht[0].table[0]和ht[0].table[1])都已经迁移到ht[1]上去了。
总结
Rehash操作分为扩展和收缩两种情况,
dict中有两个hash表,ht[0]和ht[1]。从代码中看出,dict的rehash并不是一次性完成的,而是分多次、渐进式的完成的。具体的说dict有两种不同的策略:
1、_dictRehashStep:所有的数据都是存在放dict的ht[0]中,ht[1]只在rehash的时候使用。dict进行rehash的时候,将ht[0]中的所有数据rehash到ht[1]中。
2、dictRehashMilliseconds:每次执行一段固定的时间,时间到了就暂停rehash操作。
为什么要Rehash?
1、从感性上说,随着HashTable中的数据增多,冲突的元素增多,ht[0]的链表增长,查找元素效率就越低,因此就需要Rehash。
2、从代码角度看,哈希表利用负载因子loadfactor = used/size来表明hash表当前的存储情况。当负载因子过大时操作的时间复杂度增大,负载因子过小时说明hash表的填充率很低,浪费内存。由于Redis中的数据都是存储在内存中的,因此我们必须尽量的节省内存。因此我们必须将loadfactor控制在一定的范围内,同时保证操作的时间复杂度接近O(1)和内存尽量被占用。
-EOF-