I'm starting with input data like this
我从像这样的输入数据开始
df1 = pandas.DataFrame( {
"Name" : ["Alice", "Bob", "Mallory", "Mallory", "Bob" , "Mallory"] ,
"City" : ["Seattle", "Seattle", "Portland", "Seattle", "Seattle", "Portland"] } )
Which when printed appears as this:
当印刷出来的时候:
City Name
0 Seattle Alice
1 Seattle Bob
2 Portland Mallory
3 Seattle Mallory
4 Seattle Bob
5 Portland Mallory
Grouping is simple enough:
分组很简单:
g1 = df1.groupby( [ "Name", "City"] ).count()
and printing yields a GroupBy
object:
打印产生GroupBy对象:
City Name
Name City
Alice Seattle 1 1
Bob Seattle 2 2
Mallory Portland 2 2
Seattle 1 1
But what I want eventually is another DataFrame object that contains all the rows in the GroupBy object. In other words I want to get the following result:
但是我最终想要的是另一个DataFrame对象,它包含GroupBy对象中的所有行。换句话说,我想得到以下结果:
City Name
Name City
Alice Seattle 1 1
Bob Seattle 2 2
Mallory Portland 2 2
Mallory Seattle 1 1
I can't quite see how to accomplish this in the pandas documentation. Any hints would be welcome.
我无法在熊猫文件中看到如何实现这一点。任何提示都是受欢迎的。
6 个解决方案
#1
345
g1
here is a DataFrame. It has a hierarchical index, though:
g1是一个DataFrame。不过,它有一个分级索引:
In [19]: type(g1)
Out[19]: pandas.core.frame.DataFrame
In [20]: g1.index
Out[20]:
MultiIndex([('Alice', 'Seattle'), ('Bob', 'Seattle'), ('Mallory', 'Portland'),
('Mallory', 'Seattle')], dtype=object)
Perhaps you want something like this?
也许你想要这样的东西?
In [21]: g1.add_suffix('_Count').reset_index()
Out[21]:
Name City City_Count Name_Count
0 Alice Seattle 1 1
1 Bob Seattle 2 2
2 Mallory Portland 2 2
3 Mallory Seattle 1 1
Or something like:
或者类似的:
In [36]: DataFrame({'count' : df1.groupby( [ "Name", "City"] ).size()}).reset_index()
Out[36]:
Name City count
0 Alice Seattle 1
1 Bob Seattle 2
2 Mallory Portland 2
3 Mallory Seattle 1
#2
72
I want to little bit change answer by Wes, because version 0.16.2 need set as_index=False
. If you don't set it, you get empty dataframe.
我想稍微改变一下Wes的答案,因为版本0.16.2需要设置as_index=False。如果不设置,就会得到空的dataframe。
来源:
Aggregation functions will not return the groups that you are aggregating over if they are named columns, when
as_index=True
, the default. The grouped columns will be the indices of the returned object.如果被命名为列,那么聚合函数将不会返回正在聚合的组,而as_index=True则是默认值。分组列将是返回对象的索引。
Passing
as_index=False
will return the groups that you are aggregating over, if they are named columns.传递as_index=False将返回您正在聚合的组,如果它们被命名为列。
Aggregating functions are ones that reduce the dimension of the returned objects, for example:
mean
,sum
,size
,count
,std
,var
,sem
,describe
,first
,last
,nth
,min
,max
. This is what happens when you do for exampleDataFrame.sum()
and get back aSeries
.聚合函数是减少返回对象的维数的函数,例如:平均数、sum、size、count、std、var、sem、describe、first、last、nth、min、max。这是当您使用DataFrame.sum()并返回一个系列时所发生的情况。
nth can act as a reducer or a filter, see here.
n可以作为还原剂或过滤器,请看这里。
import pandas as pd
df1 = pd.DataFrame({"Name":["Alice", "Bob", "Mallory", "Mallory", "Bob" , "Mallory"],
"City":["Seattle","Seattle","Portland","Seattle","Seattle","Portland"]})
print df1
#
# City Name
#0 Seattle Alice
#1 Seattle Bob
#2 Portland Mallory
#3 Seattle Mallory
#4 Seattle Bob
#5 Portland Mallory
#
g1 = df1.groupby(["Name", "City"], as_index=False).count()
print g1
#
# City Name
#Name City
#Alice Seattle 1 1
#Bob Seattle 2 2
#Mallory Portland 2 2
# Seattle 1 1
#
EDIT:
编辑:
In version 0.17.1
and later you can use subset
in count
and reset_index
with parameter name
in size
:
在0.17.1版本和以后的版本中,您可以使用count和reset_index中的子集,参数名称的大小为:
print df1.groupby(["Name", "City"], as_index=False ).count()
#IndexError: list index out of range
print df1.groupby(["Name", "City"]).count()
#Empty DataFrame
#Columns: []
#Index: [(Alice, Seattle), (Bob, Seattle), (Mallory, Portland), (Mallory, Seattle)]
print df1.groupby(["Name", "City"])[['Name','City']].count()
# Name City
#Name City
#Alice Seattle 1 1
#Bob Seattle 2 2
#Mallory Portland 2 2
# Seattle 1 1
print df1.groupby(["Name", "City"]).size().reset_index(name='count')
# Name City count
#0 Alice Seattle 1
#1 Bob Seattle 2
#2 Mallory Portland 2
#3 Mallory Seattle 1
The difference between count
and size
is that size
counts NaN values while count
does not.
计数和大小之间的区别是,大小计算NaN值,而count不计算。
#3
7
Simply, this should do the task:
简单地说,这应该完成以下任务:
import pandas as pd
grouped_df = df1.groupby( [ "Name", "City"] )
pd.DataFrame(grouped_df.size().reset_index(name = "Group_Count"))
Here, grouped_df.size() pulls up the unique groupby count, and reset_index() method resets the name of the column you want it to be. Finally, the pandas Dataframe() function is called upon to create DataFrame object.
在这里,grouped_df.size()通过计数提取惟一的groupby,然后reset_index()方法重置您想要的列的名称。最后,调用panda()函数来创建Dataframe对象。
#4
5
I found this worked for me.
我发现这对我很有效。
import numpy as np
import pandas as pd
df1 = pd.DataFrame({
"Name" : ["Alice", "Bob", "Mallory", "Mallory", "Bob" , "Mallory"] ,
"City" : ["Seattle", "Seattle", "Portland", "Seattle", "Seattle", "Portland"]})
df1['City_count'] = 1
df1['Name_count'] = 1
df1.groupby(['Name', 'City'], as_index=False).count()
#5
4
Maybe I misunderstand the question but if you want to convert the groupby back to a dataframe you can use .to_frame(). I wanted to reset the index when I did this so I included that part as well.
也许我误解了这个问题,但是如果您想将groupby转换为dataframe,可以使用.to_frame()。我想在做这个的时候重置索引所以我也包括了这一部分。
example code unrelated to question
与问题无关的示例代码
df = df['TIME'].groupby(df['Name']).min()
df = df.to_frame()
df = df.reset_index(level=['Name',"TIME"])
#6
2
I have aggregated with Qty wise data and store to dataframe
我已经与Qty wise数据聚合并存储到dataframe
almo_grp_data = pd.DataFrame({'Qty_cnt' :
almo_slt_models_data.groupby( ['orderDate','Item','State Abv']
)['Qty'].sum()}).reset_index()
#1
345
g1
here is a DataFrame. It has a hierarchical index, though:
g1是一个DataFrame。不过,它有一个分级索引:
In [19]: type(g1)
Out[19]: pandas.core.frame.DataFrame
In [20]: g1.index
Out[20]:
MultiIndex([('Alice', 'Seattle'), ('Bob', 'Seattle'), ('Mallory', 'Portland'),
('Mallory', 'Seattle')], dtype=object)
Perhaps you want something like this?
也许你想要这样的东西?
In [21]: g1.add_suffix('_Count').reset_index()
Out[21]:
Name City City_Count Name_Count
0 Alice Seattle 1 1
1 Bob Seattle 2 2
2 Mallory Portland 2 2
3 Mallory Seattle 1 1
Or something like:
或者类似的:
In [36]: DataFrame({'count' : df1.groupby( [ "Name", "City"] ).size()}).reset_index()
Out[36]:
Name City count
0 Alice Seattle 1
1 Bob Seattle 2
2 Mallory Portland 2
3 Mallory Seattle 1
#2
72
I want to little bit change answer by Wes, because version 0.16.2 need set as_index=False
. If you don't set it, you get empty dataframe.
我想稍微改变一下Wes的答案,因为版本0.16.2需要设置as_index=False。如果不设置,就会得到空的dataframe。
来源:
Aggregation functions will not return the groups that you are aggregating over if they are named columns, when
as_index=True
, the default. The grouped columns will be the indices of the returned object.如果被命名为列,那么聚合函数将不会返回正在聚合的组,而as_index=True则是默认值。分组列将是返回对象的索引。
Passing
as_index=False
will return the groups that you are aggregating over, if they are named columns.传递as_index=False将返回您正在聚合的组,如果它们被命名为列。
Aggregating functions are ones that reduce the dimension of the returned objects, for example:
mean
,sum
,size
,count
,std
,var
,sem
,describe
,first
,last
,nth
,min
,max
. This is what happens when you do for exampleDataFrame.sum()
and get back aSeries
.聚合函数是减少返回对象的维数的函数,例如:平均数、sum、size、count、std、var、sem、describe、first、last、nth、min、max。这是当您使用DataFrame.sum()并返回一个系列时所发生的情况。
nth can act as a reducer or a filter, see here.
n可以作为还原剂或过滤器,请看这里。
import pandas as pd
df1 = pd.DataFrame({"Name":["Alice", "Bob", "Mallory", "Mallory", "Bob" , "Mallory"],
"City":["Seattle","Seattle","Portland","Seattle","Seattle","Portland"]})
print df1
#
# City Name
#0 Seattle Alice
#1 Seattle Bob
#2 Portland Mallory
#3 Seattle Mallory
#4 Seattle Bob
#5 Portland Mallory
#
g1 = df1.groupby(["Name", "City"], as_index=False).count()
print g1
#
# City Name
#Name City
#Alice Seattle 1 1
#Bob Seattle 2 2
#Mallory Portland 2 2
# Seattle 1 1
#
EDIT:
编辑:
In version 0.17.1
and later you can use subset
in count
and reset_index
with parameter name
in size
:
在0.17.1版本和以后的版本中,您可以使用count和reset_index中的子集,参数名称的大小为:
print df1.groupby(["Name", "City"], as_index=False ).count()
#IndexError: list index out of range
print df1.groupby(["Name", "City"]).count()
#Empty DataFrame
#Columns: []
#Index: [(Alice, Seattle), (Bob, Seattle), (Mallory, Portland), (Mallory, Seattle)]
print df1.groupby(["Name", "City"])[['Name','City']].count()
# Name City
#Name City
#Alice Seattle 1 1
#Bob Seattle 2 2
#Mallory Portland 2 2
# Seattle 1 1
print df1.groupby(["Name", "City"]).size().reset_index(name='count')
# Name City count
#0 Alice Seattle 1
#1 Bob Seattle 2
#2 Mallory Portland 2
#3 Mallory Seattle 1
The difference between count
and size
is that size
counts NaN values while count
does not.
计数和大小之间的区别是,大小计算NaN值,而count不计算。
#3
7
Simply, this should do the task:
简单地说,这应该完成以下任务:
import pandas as pd
grouped_df = df1.groupby( [ "Name", "City"] )
pd.DataFrame(grouped_df.size().reset_index(name = "Group_Count"))
Here, grouped_df.size() pulls up the unique groupby count, and reset_index() method resets the name of the column you want it to be. Finally, the pandas Dataframe() function is called upon to create DataFrame object.
在这里,grouped_df.size()通过计数提取惟一的groupby,然后reset_index()方法重置您想要的列的名称。最后,调用panda()函数来创建Dataframe对象。
#4
5
I found this worked for me.
我发现这对我很有效。
import numpy as np
import pandas as pd
df1 = pd.DataFrame({
"Name" : ["Alice", "Bob", "Mallory", "Mallory", "Bob" , "Mallory"] ,
"City" : ["Seattle", "Seattle", "Portland", "Seattle", "Seattle", "Portland"]})
df1['City_count'] = 1
df1['Name_count'] = 1
df1.groupby(['Name', 'City'], as_index=False).count()
#5
4
Maybe I misunderstand the question but if you want to convert the groupby back to a dataframe you can use .to_frame(). I wanted to reset the index when I did this so I included that part as well.
也许我误解了这个问题,但是如果您想将groupby转换为dataframe,可以使用.to_frame()。我想在做这个的时候重置索引所以我也包括了这一部分。
example code unrelated to question
与问题无关的示例代码
df = df['TIME'].groupby(df['Name']).min()
df = df.to_frame()
df = df.reset_index(level=['Name',"TIME"])
#6
2
I have aggregated with Qty wise data and store to dataframe
我已经与Qty wise数据聚合并存储到dataframe
almo_grp_data = pd.DataFrame({'Qty_cnt' :
almo_slt_models_data.groupby( ['orderDate','Item','State Abv']
)['Qty'].sum()}).reset_index()