Cloudera impala简单介绍及安装具体解释

时间:2021-09-18 20:19:56

一、Impala简单介绍

Cloudera Impala对你存储在Apache Hadoop在HDFS,HBase的数据提供直接查询互动的SQL。除了像Hive使用同样的统一存储平台,Impala也使用同样的元数据,SQL语法(Hive SQL),ODBC驱动程序和用户界面(Hue Beeswax)。Impala还提供了一个熟悉的面向批量或实时查询和统一平台。

二、Impala安装

1.安装要求

(1)软件要求

  • Red Hat Enterprise Linux (RHEL)/CentOS 6.2 (64-bit)
  • CDH 4.1.0 or later
  • Hive
  • MySQL

注意:Impala不支持在Debian/Ubuntu, SuSE, RHEL/CentOS 5.7系统中安装。

(2)硬件要求

在Join查询过程中须要将数据集载入内存中进行计算,因此对安装Impalad的内存要求较高。

2、安装准备



(1)操作系统版本号查看

>more/etc/issue

CentOSrelease 6.2 (Final)

Kernel \ron an \m

(2)机器准备

10.28.169.112mr5

10.28.169.113mr6

10.28.169.114mr7

10.28.169.115mr8

各机器安装角色

mr5:NameNode、ResourceManager、SecondaryNameNode、Hive、impala-state-store

mr6、mr7、mr8:DataNode、NodeManager、impalad

(3)用户准备

在各个机器上新建用户hadoop,并打通ssh

(4)软件准备

到cloudera官网下载:

Hadoop:

hadoop-2.0.0-cdh4.1.2.tar.gz

hive:

hive-0.9.0-cdh4.1.2.tar.gz

impala:

impala-0.3-1.p0.366.el6.x86_64.rpm

impala-debuginfo-0.3-1.p0.366.el6.x86_64.rpm

impala-server-0.3-1.p0.366.el6.x86_64.rpm

impala-shell-0.3-1.p0.366.el6.x86_64.rpm

impala依赖包下载:

bigtop-utils-0.4(http://beta.cloudera.com/impala/redhat/6/x86_64/impala/0/RPMS/noarch/)

其它依赖包下载地址:http://mirror.bit.edu.cn/centos/6.3/os/x86_64/Packages/

4、hadoop-2.0.0-cdh4.1.2安装



(1)安装包准备

hadoop用户登录到mr5机器,将hadoop-2.0.0-cdh4.1.2.tar.gz上传到/home/hadoop/文件夹下并解压:

tar zxvf hadoop-2.0.0-cdh4.1.2.tar.gz

(2)配置环境变量

改动mr5机器hadoop用户主文件夹/home/hadoop/下的.bash_profile环境变量:

exportJAVA_HOME=/usr/jdk1.6.0_30

exportJAVA_BIN=${JAVA_HOME}/bin

exportCLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar

export  JAVA_OPTS="-Djava.library.path=/usr/local/lib-server -Xms1024m -Xmx2048m -XX:MaxPermSize=256m -Djava.awt.headless=true-Dsun.net.client.defaultReadTimeout=600

00-Djmagick.systemclassloader=no -Dnetworkaddress.cache.ttl=300-Dsun.net.inetaddr.ttl=300"

exportHADOOP_HOME=/home/hadoop/hadoop-2.0.0-cdh4.1.2

exportHADOOP_PREFIX=$HADOOP_HOME

exportHADOOP_MAPRED_HOME=${HADOOP_HOME}

exportHADOOP_COMMON_HOME=${HADOOP_HOME}

exportHADOOP_HDFS_HOME=${HADOOP_HOME}

exportHADOOP_YARN_HOME=${HADOOP_HOME}

export PATH=$PATH:${JAVA_HOME}/bin:${HADOOP_HOME}/bin:${HADOOP_HOME}/sbin

exportJAVA_HOME JAVA_BIN PATH CLASSPATH JAVA_OPTS

exportHADOOP_LIB=${HADOOP_HOME}/lib

exportHADOOP_CONF_DIR=${HADOOP_HOME}/etc/hadoop

(3)改动配置文件

在机器mr5上hadoop用户登录改动hadoop的配置文件(配置文件文件夹:hadoop-2.0.0-cdh4.1.2/etc/hadoop)

(1)、slaves :

加入下面节点

mr6

mr7

mr8

(2)、hadoop-env.sh :

添加下面环境变量

exportJAVA_HOME=/usr/jdk1.6.0_30

exportHADOOP_HOME=/home/hadoop/hadoop-2.0.0-cdh4.1.2

exportHADOOP_PREFIX=${HADOOP_HOME}

export HADOOP_MAPRED_HOME=${HADOOP_HOME}

exportHADOOP_COMMON_HOME=${HADOOP_HOME}

exportHADOOP_HDFS_HOME=${HADOOP_HOME}

exportHADOOP_YARN_HOME=${HADOOP_HOME}

exportPATH=$PATH:${JAVA_HOME}/bin:${HADOOP_HOME}/bin:${HADOOP_HOME}/sbin

exportJAVA_HOME JAVA_BIN PATH CLASSPATH JAVA_OPTS

exportHADOOP_LIB=${HADOOP_HOME}/lib

exportHADOOP_CONF_DIR=${HADOOP_HOME}/etc/hadoop

(3)、core-site.xml :

fs.default.name

hdfs://mr5:9000

The name of the defaultfile system.Either the literal string "local" or a host:port forNDFS.

true

io.native.lib.available

true

hadoop.tmp.dir

/home/hadoop/tmp

A base for other temporarydirectories.

(4)、hdfs-site.xml :

dfs.namenode.name.dir

file:/home/hadoop/dfsdata/name

Determines where on thelocal filesystem the DFS name node should store the name table.If this is acomma-delimited list of directories,then
name table is replicated in all of thedirectories,for redundancy.

true

dfs.datanode.data.dir

file:/home/hadoop/dfsdata/data

Determines where on thelocal filesystem an DFS data node should store its blocks.If this is acomma-delimited list of directories,then
data will be stored in all nameddirectories,typically on different devices.Directories that do not exist areignored.

true

dfs.replication

3

dfs.permission

false

(5)、mapred-site.xml:

mapreduce.framework.name

yarn

mapreduce.job.tracker

hdfs://mr5:9001

true

mapreduce.task.io.sort.mb

512

mapreduce.task.io.sort.factor

100

mapreduce.reduce.shuffle.parallelcopies

50

mapreduce.cluster.temp.dir

file:/home/hadoop/mapreddata/system

true

mapreduce.cluster.local.dir

file:/home/hadoop/mapreddata/local

true

(6)、yarn-env.sh :

添加下面环境变量

exportJAVA_HOME=/usr/jdk1.6.0_30

exportHADOOP_HOME=/home/hadoop/hadoop-2.0.0-cdh4.1.2

exportHADOOP_PREFIX=${HADOOP_HOME}

exportHADOOP_MAPRED_HOME=${HADOOP_HOME}

exportHADOOP_COMMON_HOME=${HADOOP_HOME}

exportHADOOP_HDFS_HOME=${HADOOP_HOME}

exportHADOOP_YARN_HOME=${HADOOP_HOME}

exportPATH=$PATH:${JAVA_HOME}/bin:${HADOOP_HOME}/bin:${HADOOP_HOME}/sbin

exportJAVA_HOME JAVA_BIN PATH CLASSPATH JAVA_OPTS

exportHADOOP_LIB=${HADOOP_HOME}/lib

exportHADOOP_CONF_DIR=${HADOOP_HOME}/etc/hadoop

(7)、yarn-site.xml:

yarn.resourcemanager.address

mr5:8080

yarn.resourcemanager.scheduler.address

mr5:8081

yarn.resourcemanager.resource-tracker.address

mr5:8082

yarn.nodemanager.aux-services

mapreduce.shuffle

yarn.nodemanager.aux-services.mapreduce.shuffle.class

org.apache.hadoop.mapred.ShuffleHandler

yarn.nodemanager.local-dirs

file:/home/hadoop/nmdata/local

thelocal directories used by the nodemanager

yarn.nodemanager.log-dirs

file:/home/hadoop/nmdata/log

thedirectories used by Nodemanagers as log directories

(4)复制到其它节点

(1)、在mr5上配置完第2步和第3步后,压缩hadoop-2.0.0-cdh4.1.2

rm hadoop-2.0.0-cdh4.1.2.tar.gz

tar  zcvf hadoop-2.0.0-cdh4.1.2.tar.gz  hadoop-2.0.0-cdh4.1.2

然后将hadoop-2.0.0-cdh4.1.2.tar.gz远程复制到mr6、mr7、mr8机器上

scp/home/hadoop/hadoop-2.0.0-cdh4.1.2.tar.gz hadoop@mr6:/home/hadoop/

scp/home/hadoop/hadoop-2.0.0-cdh4.1.2.tar.gz hadoop@mr7:/home/hadoop/

scp/home/hadoop/hadoop-2.0.0-cdh4.1.2.tar.gz hadoop@mr8:/home/hadoop/

(2)、将mr5机器上hadoop用户的配置环境的文件.bash_profile远程复制到mr6、mr7、mr8机器上

scp/home/hadoop/.bash_profile hadoop@mr6:/home/hadoop/

scp/home/hadoop/.bash_profile hadoop@mr7:/home/hadoop/

scp/home/hadoop/.bash_profile hadoop@mr8:/home/hadoop/

拷贝完毕后,在mr5、mr6、mr7、mr8机器的/home/hadoop/文件夹下运行

source.bash_profile

使得环境变量生效

(5)启动hdfs和yarn

以上步骤都运行完毕后,用hadoop用户登录到mr5机器依次运行:

hdfsnamenode -format

start-dfs.sh

start-yarn.sh

通过jps命令查看:

mr5成功启动了NameNode、ResourceManager、SecondaryNameNode进程;

mr6、mr7、mr8成功启动了DataNode、NodeManager进程。

(6)验证成功状态

通过下面方式查看节点的健康状态和作业的运行情况:

浏览器訪问(本地须要配置hosts)

http://mr5:50070/dfshealth.jsp

http://mr5:8088/cluster

5、hive-0.9.0-cdh4.1.2安装



(1)安装包准备

使用hadoop用户上传hive-0.9.0-cdh4.1.2到mr5机器的/home/hadoop/文件夹下并解压:

tar zxvf hive-0.9.0-cdh4.1.2

(2)配置环境变量

在.bash_profile加入环境变量:

exportHIVE_HOME=/home/hadoop/hive-0.9.0-cdh4.1.2

exportPATH=$PATH:${JAVA_HOME}/bin:${HADOOP_HOME}/bin:${HADOOP_HOME}/sbin:${HIVE_HOME}/bin

exportHIVE_CONF_DIR=$HIVE_HOME/conf

exportHIVE_LIB=$HIVE_HOME/lib

加入完后运行下面命令使得环境变量生效:

..bash_profile

(3)改动配置文件

改动hive配置文件(配置文件文件夹:hive-0.9.0-cdh4.1.2/conf/)

在hive-0.9.0-cdh4.1.2/conf/文件夹下新建hive-site.xml文件,并加入下面配置信息:

hive.metastore.local

true

javax.jdo.option.ConnectionURL

jdbc:mysql://10.28.169.61:3306/hive_impala?createDatabaseIfNotExist=true

javax.jdo.option.ConnectionDriverName

com.mysql.jdbc.Driver

javax.jdo.option.ConnectionUserName

hadoop

javax.jdo.option.ConnectionPassword

123456

hive.security.authorization.enabled

false

hive.security.authorization.createtable.owner.grants

ALL

hive.querylog.location

${user.home}/hive-logs/querylog

(4)验证成功状态

完毕以上步骤之后,验证hive安装是否成功

在mr5命令行运行hive,并输入”show tables;”,出现下面提示,说明hive成功安装:

>hive

hive>show tables;

OK

Time taken:18.952 seconds

hive>

6、impala安装

说明:

(1)、下面1、2、3、4步是在root用户分别在mr5、mr6、mr7、mr8下运行

(2)、下面第5步是在hadoop用户下运行

(1)安装依赖包:

安装mysql-connector-java:

yum install mysql-connector-java

安装bigtop

rpm -ivh bigtop-utils-0.4+300-1.cdh4.0.1.p0.1.el6.noarch.rpm

安装libevent

rpm -ivhlibevent-1.4.13-4.el6.x86_64.rpm

如存在其它须要安装的依赖包,能够到下面链接:

http://mirror.bit.edu.cn/centos/6.3/os/x86_64/Packages/进行下载。

(2)安装impala的rpm,分别运行

rpm -ivh impala-0.3-1.p0.366.el6.x86_64.rpm

rpm -ivh impala-server-0.3-1.p0.366.el6.x86_64.rpm

rpm -ivh impala-debuginfo-0.3-1.p0.366.el6.x86_64.rpm

rpm -ivh impala-shell-0.3-1.p0.366.el6.x86_64.rpm

(3)找到impala的安装文件夹

完毕第1步和第2步后,通过下面命令:

find / -name impala

输出:

/usr/lib/debug/usr/lib/impala

/usr/lib/impala

/var/run/impala

/var/log/impala

/var/lib/alternatives/impala

/etc/default/impala

/etc/alternatives/impala

找到impala的安装文件夹:/usr/lib/impala

(4)配置Impala

在Impala安装目录/usr/lib/impala下创建conf,将hadoop中的conf目录下的core-site.xml、hdfs-site.xml、hive中的conf目录下的hive-site.xml拷贝到当中。

在core-site.xml文件里加入例如以下内容:

dfs.client.read.shortcircuit

true

dfs.client.read.shortcircuit.skip.checksum

false

在hadoop和impala的hdfs-site.xml文件里加入例如以下内容并重新启动hadoop和impala:

dfs.datanode.data.dir.perm

dfs.block.local-path-access.user

hadoop

dfs.datanode.hdfs-blocks-metadata.enabled

true

(5)启动服务

(1)、在mr5启动Impala state store,命令例如以下:

>GLOG_v=1 nohup statestored-state_store_port=24000 &

假设statestore正常启动,能够在/tmp/statestored.INFO查看。假设出现异常,能够查看/tmp/statestored.ERROR定位错误信息。

(2)、在mr6、mr7、mr8启动Impalad,命令例如以下:

mr6:

>GLOG_v=1 nohup impalad -state_store_host=mr5-nn=mr5 -nn_port=9000 -hostname=mr6 -ipaddress=10.28.169.113 &

mr7:

>GLOG_v=1 nohup impalad -state_store_host=mr5-nn=mr5 -nn_port=9000 -hostname=mr7 -ipaddress=10.28.169.114 &

mr8:

>GLOG_v=1 nohup impalad -state_store_host=mr5-nn=mr5 -nn_port=9000 -hostname=mr8 -ipaddress=10.28.169.115 &

假设impalad正常启动,能够在/tmp/impalad.INFO查看。假设出现异常,能够查看/tmp/ impalad.ERROR定位错误信息。

(6)使用shell

使用impala-shell启动Impala Shell,分别连接各Impalad主机(mr6、mr7、mr8),刷新元数据,之后就能够运行shell命令。相关的命令例如以下(能够在随意节点运行):

>impala-shell

[Not connected]> connect mr6:21000

[mr6:21000] >refresh

[mr6:21000]>connectmr7:21000

[mr7:21000]>refresh

[mr7:21000]>connectmr8:21000

[mr8:21000]>refresh

(7)验证成功状态

使用impala-shell启动Impala Shell,分别连接各Impalad主机,刷新元数据,之后就能够运行shell命令。相关的命令例如以下(能够在随意节点运行):

>impala-shell

[Not connected]> connect mr6:21000

[mr6:21000]>refresh

[mr6:21000] >show databases

default

[mr6:21000] >

出现以上提示信息,说明成功安装。

三、Impala的使用



1、命令行功能

命令
描写叙述
备注
connect 连接Impala节点 connect mr8:21000
describe 查看表结构 describe tab1
explain 解析SQL语句 explain select * from tab..
help 帮助命令,查看命令的说明 help connect
insert 插入数据命令 insert overwrite

insert into
quit 退出命令  
refresh 刷新源数据库  
select 查询语句命令  
set 设置impala查询选项  
shell 运行本地linux命令  
show 查看表和数据库命令  
use 选择使用数据库  
version 查看Impala版本号  

set命令參数说明:

參数
默认值
PARTITION_AGG false
NUM_SCANNER_THREADS 0
MAX_IO_BUFFERS 0
MAX_SCAN_RANGE_LENGTH 0
NUM_NODES 0
DISABLE_CODEGEN false
MAX_ERRORS 0
ABORT_ON_ERROR false
BATCH_SIZE 0
ALLOW_UNSUPPORTED_FORMATS false

2、当前支持的语言元素

Impala的查询语言是基于Hive的HiveQL,眼下impala不支持针对表和分区的DDL,可是支持DML。事实上大部分的HiveQL不须要改动就能够在impala上面运行的,包含JOIN, AGGREGATE, DISTINCT, UNION ALL, ORDER
BY, LIMIT 和subquery等等。

(1)、select

l  数据类型:boolean, tinyint, smallint, int, bigint, float, double, timestamp, string

l  DISTINCT

l  FROM 子句支持子查询.

l  WHERE, GROUP BY, HAVING

l  ORDER BY,可是须要和limit一起使用

l  JOINS: Left、 right、 semi、 full and outer

l  UNION ALL

l  LIMIT

l  External tables

l  关系运算符:>、<、=等

l  算术运算符:加法、减法等

l  逻辑boolean操作符:and、or、not,可是impala不支持相应的&&、||、!

l  COUNT, SUM, CAST, LIKE, IN, BETWEEN, 和COALESCE

说明:

l  Join的时候大表一定要放在左边

l  Join subsequent tables according to which table has the mostselective filter. Joining the

table with the most selective filterresults in the fewest number of rows are being returned.

(2)、insert

当前版本号的impala,insert仅仅支持已经创建好的表和分区。全部表和分区结构的创建和改动仅仅能通过HIVE来完毕。

如今支持的insert包含:

l  INSERT INTO

l  INSERT OVERWRITE

说明:

Insert命令可能会导致Hive的元数据发送改变,所以在使用impala运行查询时最好先运行一下refresh命令刷新一下hive元数据。

(3)、refresh

为了准确地响应查询,impala必需要知道当前Hive中数据库的全部元数据,这样impala的client才可以直接进行正确查询。因此,假设使用impalaclient进行的一些操作改动hive的元数据后,最好impala的每个节点都又一次refresh,保证元数据是最新的。可是并非所以的impala操作都需要refresh元数据。

在下面几种情况下impalad实例须要refresh元数据:

l  当前impalad实例改动了元数据

l  其它比方hive或者其它的impalad实例改动了元数据

l  通过impala-shell命令行或者ODBC驱动程序连接impala进行的操作导致数据库发生改变

Impalad实例不须要refresh的情况:

l  当集群中仅仅有一个impalad实例的时候,即使这个实例改动了元数据,该impalad实例会自己主动更新自己的数据库元数据信息。这样的情况下是不须要refresh的。

l  假设被改动元数据的数据库是一个后台数据库,也即impalad实例不须要连接该数据库以获得元数据的数据库,这样的情况下也是不须要refresh的。

Hive元数据被改动的典型情况包含:

l  通过Hive进行了ALTER,CREATE, DROP 或 INSERT操作

l  通过impalad进行了INSERT操作

l

(4)、DESCRIBE

l  DESCRIBE tableName:列出表的结构信息

(5)、SHOW

l  SHOW TABLES :列出全部的表

l  SHOW DATABASES :列出全部的数据库

l  SHOW SCHEMAS :列出全部的schema

(6)、USE

l  USE DATABASE

Impala的主要资源