AES加密的S盒和逆S盒的推导代码备份(C实现)

时间:2021-08-05 20:00:07

摘取自https://www.cnblogs.com/Junbo20141201/p/9369860.html,感谢原作者的详细解读。

#include <stdio.h>

static const int S[][] = {0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab,
0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72,
0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31,
0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2,
0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f,
0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58,
0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f,
0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3,
0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19,
0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b,
0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4,
0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae,
0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b,
0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d,
0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28,
0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb,
0x16}; /**
* 逆S盒
*/
static const int S2[][] = {0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7,
0xfb,
0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9,
0xcb,
0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3,
0x4e,
0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1,
0x25,
0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6,
0x92,
0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d,
0x84,
0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45,
0x06,
0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a,
0x6b,
0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6,
0x73,
0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf,
0x6e,
0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe,
0x1b,
0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a,
0xf4,
0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec,
0x5f,
0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c,
0xef,
0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99,
0x61,
0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c,
0x7d}; //S盒字节变换
uint8_t byteTransformation(uint8_t a, uint8_t x) {
uint8_t tmp[] = {}; for (uint8_t i = ; i < ; i++) {
tmp[i] = (((a >> i) & 0x1) ^ ((a >> ((i + ) % )) & 0x1) ^ ((a >> ((i + ) % )) & 0x1) ^
((a >> ((i + ) % )) & 0x1) ^ ((a >> ((i + ) % )) & 0x1) ^ ((x >> i) & 0x1)) << i;
}
tmp[] = tmp[] + tmp[] + tmp[] + tmp[] + tmp[] + tmp[] + tmp[] + tmp[];
return tmp[];
} //逆S盒字节变换
uint8_t invByteTransformation(uint8_t a, uint8_t x) {
uint8_t tmp[] = {}; for (uint8_t i = ; i < ; i++) {
tmp[i] = (((a >> ((i + ) % )) & 0x1) ^ ((a >> ((i + ) % )) & 0x1) ^ ((a >> ((i + ) % )) & 0x1) ^
((x >> i) & 0x1)) << i;
}
tmp[] = tmp[] + tmp[] + tmp[] + tmp[] + tmp[] + tmp[] + tmp[] + tmp[];
return tmp[];
} //找到最高位
uint8_t findHigherBit(uint16_t val) {
int i = ;
while (val) {
i++;
val = val >> ;
}
return i;
} //GF(2^8)的多项式除法
uint8_t gf28_div(uint16_t div_ed, uint16_t div, uint16_t *remainder) {
uint16_t r0 = ;
uint8_t qn = ;
int bitCnt = ; r0 = div_ed; bitCnt = findHigherBit(r0) - findHigherBit(div);
while (bitCnt >= ) {
qn = qn | ( << bitCnt);
r0 = r0 ^ (div << bitCnt);
bitCnt = findHigherBit(r0) - findHigherBit(div);
}
*remainder = r0;
return qn;
} //GF(2^8)的多项式乘法
uint16_t polynomialMutil(uint8_t a, uint8_t b) {
uint16_t tmp[] = {};
uint8_t i;
for (i = ; i < ; i++) {
tmp[i] = (a << i) * ((b >> i) & 0x1);
} tmp[] = tmp[] ^ tmp[] ^ tmp[] ^ tmp[] ^ tmp[] ^ tmp[] ^ tmp[] ^ tmp[]; return tmp[];
} //GF(2^8)多项式的扩展欧几里得算法
uint8_t extEuclidPolynomial(uint8_t a, uint16_t m) {
uint16_t r0, r1, r2;
uint8_t qn, v0, v1, v2, w0, w1, w2; r0 = m;
r1 = a; v0 = ;
v1 = ; w0 = ;
w1 = ; while (r1 != ) {
qn = gf28_div(r0, r1, &r2); v2 = v0 ^ polynomialMutil(qn, v1);
w2 = w0 ^ polynomialMutil(qn, w1); r0 = r1;
r1 = r2; v0 = v1;
v1 = v2; w0 = w1;
w1 = w2;
}
return w1;
} //S盒产生
void s_box_gen(void) {
uint8_t i, j;
uint8_t s_box_ary[][] = {}; //初始化S盒
for (i = ; i < 0x10; i++) {
for (j = ; j < 0x10; j++) {
s_box_ary[i][j] = ((i << ) & 0xF0) + (j & (0xF));
}
} printf(" 0 1 2 3 4 5 6 7 8 9 A B C D E F");
for (i = ; i < 0x10; i++) {
printf("\r\n%2x", i);
for (j = ; j < 0x10; j++) {
printf(" %2x", s_box_ary[i][j]);
}
}
//求在GF(2^8)域上的逆,0映射到自身
printf("\r\n");
for (i = ; i < 0x10; i++) {
for (j = ; j < 0x10; j++) {
if (s_box_ary[i][j] != ) {
s_box_ary[i][j] = extEuclidPolynomial(s_box_ary[i][j], 0x11B);
}
}
} printf("\r\n\r\n 0 1 2 3 4 5 6 7 8 9 A B C D E F");
for (i = ; i < 0x10; i++) {
printf("\r\n%2x", i);
for (j = ; j < 0x10; j++) {
printf(" %2x", s_box_ary[i][j]);
}
}
//对每个字节做变换
for (i = ; i < 0x10; i++) {
for (j = ; j < 0x10; j++) {
s_box_ary[i][j] = byteTransformation(s_box_ary[i][j], 0x63);
}
} printf("\r\n\r\n 0 1 2 3 4 5 6 7 8 9 A B C D E F");
for (i = ; i < 0x10; i++) {
printf("\r\n%2x", i);
for (j = ; j < 0x10; j++) {
printf(" %2x", s_box_ary[i][j]);
}
}
} //逆S盒产生
void inv_s_box_gen(void) {
uint8_t i, j;
uint8_t s_box_ary[][] = {};
uint8_t b = , bb = ; //初始化S盒
for (i = ; i < 0x10; i++) {
for (j = ; j < 0x10; j++) {
s_box_ary[i][j] = ((i << ) & 0xF0) + (j & (0xF));
}
} printf(" 0 1 2 3 4 5 6 7 8 9 A B C D E F");
for (i = ; i < 0x10; i++) {
printf("\r\n%2x", i);
for (j = ; j < 0x10; j++) {
printf(" %2x", s_box_ary[i][j]);
}
}
//对每个字节做变换
for (i = ; i < 0x10; i++) {
for (j = ; j < 0x10; j++) {
s_box_ary[i][j] = invByteTransformation(s_box_ary[i][j], 0x05);
}
} printf("\r\n\r\n 0 1 2 3 4 5 6 7 8 9 A B C D E F");
for (i = ; i < 0x10; i++) {
printf("\r\n%2x", i);
for (j = ; j < 0x10; j++) {
printf(" %2x", s_box_ary[i][j]);
}
} //求在GF(2^8)域上的逆,0映射到自身
printf("\r\n");
for (i = ; i < 0x10; i++) {
for (j = ; j < 0x10; j++) {
if (s_box_ary[i][j] != ) {
s_box_ary[i][j] = extEuclidPolynomial(s_box_ary[i][j], 0x11B);
}
}
} printf("\r\n\r\n 0 1 2 3 4 5 6 7 8 9 A B C D E F");
for (i = ; i < 0x10; i++) {
printf("\r\n%2x", i);
for (j = ; j < 0x10; j++) {
printf(" %2x", s_box_ary[i][j]);
}
}
} int main(int argc, char const *argv[]) {
// s_box_gen();
inv_s_box_gen();
return ;
}