题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=5294
题意:
给你个无向图:
1、求最少删除几条边就能破坏节点1到节点n的最短路径,
2、最多能删除多少条边同时保证1到n的最短距离不变。
题解:
首先用spfa或dijcstra跑出所有最短路组成的DAG图。
用这个图跑最大流节能解决第一个问题,用这个图跑一遍bfs最短路就能解决第二个问题。
然而我在跑最大流的时候竟然把DAG图建成双向的了orz。。
代码:
#include<iostream>
#include<cstdio>
#include<vector>
#include<utility>
#include<queue>
#include<cstring>
using namespace std; const int maxn = ;
const int INF = 0x3f3f3f3f; struct Edge {
int u, v, c, f;
Edge(int u, int v, int c, int f) :u(u), v(v), c(c), f(f) {}
Edge() {}
}; struct Dinic {
int n, m, s, t;
vector<Edge> egs;
vector<int> G[maxn];
bool vis[maxn];
int d[maxn];
int cur[maxn]; void init(int n) {
this->n = n;
for (int i = ; i < n; i++) G[i].clear();
egs.clear();
} void addEdge(int u, int v, int c) {
egs.push_back(Edge(u, v, c, ));
egs.push_back(Edge(v, u, , ));
m = egs.size();
G[u].push_back(m - );
G[v].push_back(m - );
}
bool bfs() {
memset(vis, , sizeof(vis));
queue<int> Q;
Q.push(s);
d[s] = ;
vis[s] = ;
while (!Q.empty()) {
int x = Q.front(); Q.pop();
for (int i = ; i < G[x].size(); i++) {
Edge& e = egs[G[x][i]];
if (!vis[e.v] && e.c>e.f) {
vis[e.v] = ;
d[e.v] = d[x] + ;
Q.push(e.v);
}
}
}
return vis[t];
}
int dfs(int x, int a) {
if (x == t || a == ) return a;
int flow = , f;
for (int& i = cur[x]; i < G[x].size(); i++) {
Edge& e = egs[G[x][i]];
if (d[x] + == d[e.v] && (f = dfs(e.v, min(a, e.c - e.f)))>) {
e.f += f;
egs[G[x][i] ^ ].f -= f;
flow += f;
a -= f;
if (a == ) break;
}
}
return flow;
}
int Maxflow(int s, int t) {
this->s = s; this->t = t;
int flow = ;
while (bfs()) {
memset(cur, , sizeof(cur));
flow += dfs(s, INF);
}
return flow;
}
}dinic; int n, m; vector<pair<int, int> > G[maxn];
vector<pair<int,int> > pre[maxn]; int inq[maxn], d[maxn];
void spfa() {
queue<int> Q;
memset(inq, , sizeof(inq));
memset(d, 0x3f, sizeof(d));
d[] = ; inq[] = ; Q.push();
while (!Q.empty()) {
int u = Q.front(); Q.pop();
inq[u] = ;
for (int i = ; i < G[u].size(); i++) {
int v = G[u][i].first, w = G[u][i].second;
if (d[v] > d[u] + w) {
d[v] = d[u] + w;
pre[v].clear(); pre[v].push_back(make_pair(u,w));
if (!inq[v]) {
Q.push(v); inq[v] = ;
}
}
else if (d[v] == d[u] + w) {
pre[v].push_back(make_pair(u,w));
}
}
}
} int dp[maxn];
int bfs() {
memset(dp, -, sizeof(dp));
queue<int> Q;
Q.push(n - ); dp[n - ] = ;
while (!Q.empty()) {
int u = Q.front(); Q.pop();
for (int i = ; i < pre[u].size(); i++) {
int v = pre[u][i].first;
if (dp[v] == -) {
dp[v] = dp[u] + ;
Q.push(v);
}
}
}
return dp[];
} void init() {
dinic.init(n);
for (int i = ; i < n; i++) G[i].clear(),pre[i].clear();
} int main() {
while (scanf("%d%d", &n, &m) == && n) {
init();
for (int i = ; i < m; i++) {
int u, v, w;
scanf("%d%d%d", &u, &v, &w); u--, v--;
G[u].push_back(make_pair(v, w));
G[v].push_back(make_pair(u, w));
}
spfa();
for (int i = n - ; i > ; i--) {
for (int j = ; j < pre[i].size(); j++) {
int v = pre[i][j].first;
//最后建出来的图应该是DAG图!
//dinic.addEdge(i, v, 1);
dinic.addEdge(v, i, );
}
}
int ans1 = dinic.Maxflow(,n-);
int ans2 = m-bfs();
printf("%d %d\n", ans1,ans2);
}
return ;
} /*
8 9
1 2 2
2 3 2
2 4 1
3 5 3
4 5 4
5 8 1
1 6 2
6 7 5
7 8 2 3 3
1 2 1
1 3 1
2 3 1 3 4
1 2 1
2 3 0
1 3 2
1 3 3 */