参考来源:
https://github.com/digoal/blog/blob/master/201803/20180326_01.md#postgresql-一主多从多副本强同步简明手册---配置压测监控切换防脑裂修复0丢失---珍藏级
PostgreSQL 一主多从(多副本,强同步)简明手册 - 配置、压测、监控、切换、防脑裂、修复、0丢失 - 珍藏级
作者
digoal
日期
2018-03-25
标签
PostgreSQL , 多副本 , 一主多从 , 流复制
背景
PostgreSQL物理流复制有几个特点
1、延迟及低,毫不畏惧大事务
2、支持断点续传
3、支持多副本
4、配置简单,看本文
5、备库与主库物理完全一致,并支持只读
所以大多数用户都会使用流复制来搭建只读备库,容灾,备份节点,HA等。
本文主要介绍一下PostgreSQL一主多从的配置,以及多副本强同步的配置。
1 准备硬件环境
假设我们需要构建一个1主2备的环境,那么需要3台主机。如果你需要用这个环境来实现高可用,则有几种方案。
1、PROXY或DNS方案
PROXY或DNS需要另外准备,这里不多说,目的就是让DNS连接到
2、VIP漂移方案
不管用哪套方案,只要做HA,就需要仲裁,即管理整个集群的节点。它主要负责切换主节点,漂移VIP或通知PROXY\DNS指向新主节点。
3、如果做到0丢失,防脑裂。(我们需要一个约定,只要客户端还没有收到事务结束的状态,这个事务是unknown的,也就是说回滚或者已提交都是可以接受的。)
只要控制了大于或等于(一会PG中参数指定“同步备库数 - 同步副本数 + 1”)个节点,再选择新的主节点(选出它们中WAL位点最新的作为新主节点),则绝对不可能出现脑裂的问题,也不会丢失数据。
《PG多节点(quorum based), 0丢失 HA(failover,switchover)方案》
例如:
总共有5个从库,如果配置如下
synchronous_standby_names = 'ANY 2 (*)'
那么需要控制 5-2+1=4个或以上从库,如果需要切换,就可以认为绝对不会出现脑裂或丢数据的情况。
因为冻结了4个从库后,主库剩下的从库只有1个,就无法满足2个副本,所以不可能再提交并返回用户事务状态。
目前只能冻结从库的replay,无法冻结receiver
pg_catalog | pg_wal_replay_pause | void | | normal
pg_catalog | pg_wal_replay_resume | void | | normal
如果可以直接冻结receiver就完美了,切换时很好用
我们把重点放在如何构建一种多从,如何设置多副本强同步上。
硬件:
3台物理机,万兆互联,同一局域网最好,如果你要做跨机房容灾,就不要在乎同一局域网了(只要保证足够大的带宽可以实现主备流复制的延迟较低就可以)。
由于我这里写文档用的是测试环境,用单台虚拟机(56核,224GB MEM,3TB DISK)代替,读者请关注监听端口,不同的端口代表不同的库。(在三主机中,根据本文的配置,更换一下IP+PORT即可)
主库 127.0.0.1 : 1921
从库1 127.0.0.1 : 1922
从库2 127.0.0.1 : 1923
2 准备软件环境
CentOS 7.x x64
PostgreSQL 10
可以参考如下任意文档进行部署
《PostgreSQL 10 + PostGIS + Sharding(pg_pathman) + MySQL(fdw外部表) on ECS 部署指南(适合新用户)》
准备两个大目录,分别存放数据文件和WAL REDO文件.
/dev/vdc1 1.5T 554G 902G 39% /data02 # wal redo
/dev/vdb1 1.5T 275G 1.2T 19% /data01 # datafile
mkdir /data01/pg
mkdir /data02/pg
chown postgres:postgres /data01/pg
chown postgres:postgres /data02/pg
如果你是在三台物理机上部署,请确保三台物理机之间可以相互访问它们的数据库监听端口。(否则怎么基于网络做流复制呀.)
3 初始化主库
1、创建一个配置文件,方便我们切换主备的连接环境。
su - postgres
vi env.sh
export PS1="$USER@`/bin/hostname -s`-> "
export PGPORT=$1
# export PGPORT=1921
export PGDATA=/data01/pg/pg_root$PGPORT
export LANG=en_US.utf8
export PGHOME=/usr/pgsql-10
export LD_LIBRARY_PATH=$PGHOME/lib:/lib64:/usr/lib64:/usr/local/lib64:/lib:/usr/lib:/usr/local/lib:$LD_LIBRARY_PATH
export DATE=`date +"%Y%m%d%H%M"`
export PATH=$PGHOME/bin:$PATH:.
export MANPATH=$PGHOME/share/man:$MANPATH
export PGHOST=$PGDATA
export PGUSER=postgres
export PGDATABASE=postgres
alias rm='rm -i'
alias ll='ls -lh'
unalias vi
2、连接到主库,初始化数据库
su - postgres
. ./env.sh 1921
initdb -D $PGDATA -U postgres -E UTF8 --locale=en_US.utf8 -X /data02/pg/pg_wal_$PGPORT
4 配置主库
su - postgres
. ./env.sh 1921
1、配置postgresql.conf
vi $PGDATA/postgresql.conf
修改如下配置
listen_addresses = '0.0.0.0'
port = 1921 ## 主库监听端口
max_connections = 5000
superuser_reserved_connections = 13
unix_socket_directories = '.'
tcp_keepalives_idle = 60
tcp_keepalives_interval = 10
tcp_keepalives_count = 10
shared_buffers = 24GB
huge_pages = try
work_mem = 4MB
maintenance_work_mem = 1GB
dynamic_shared_memory_type = posix
shared_preload_libraries = 'pg_stat_statements'
vacuum_cost_delay = 0
bgwriter_delay = 10ms
bgwriter_lru_maxpages = 1000
bgwriter_lru_multiplier = 5.0
effective_io_concurrency = 0
max_worker_processes = 128
wal_level = replica
synchronous_commit = remote_write
full_page_writes = on
wal_buffers = 64MB
wal_writer_delay = 10ms
checkpoint_timeout = 30min
max_wal_size = 48GB
min_wal_size = 12GB
checkpoint_completion_target = 0.1
archive_mode = on
archive_command = '/bin/date'
max_wal_senders = 8
wal_keep_segments = 4096
wal_sender_timeout = 15s
hot_standby = on
max_standby_archive_delay = 600s
max_standby_streaming_delay = 600s
wal_receiver_status_interval = 1s
hot_standby_feedback = off
wal_receiver_timeout = 30s
wal_retrieve_retry_interval = 5s
random_page_cost = 1.1
log_destination = 'csvlog'
logging_collector = on
log_directory = 'log'
log_filename = 'postgresql-%a.log'
log_truncate_on_rotation = on
log_rotation_age = 1d
log_rotation_size = 0
log_checkpoints = on
log_connections = on
log_disconnections = on
log_error_verbosity = verbose
log_line_prefix = '%m [%p] '
log_lock_waits = on
log_statement = 'ddl'
log_timezone = 'PRC'
autovacuum = on
log_autovacuum_min_duration = 0
autovacuum_max_workers = 8
autovacuum_freeze_max_age = 950000000
autovacuum_multixact_freeze_max_age = 1100000000
autovacuum_vacuum_cost_delay = 0
datestyle = 'iso, mdy'
timezone = 'PRC'
lc_messages = 'en_US.utf8'
lc_monetary = 'en_US.utf8'
lc_numeric = 'en_US.utf8'
lc_time = 'en_US.utf8'
default_text_search_config = 'pg_catalog.english'
# wal_log_hints = on # 如果你需要用pg_rewind修复WAL的时间线差异, 需要开启它, 但是开启它会导致写wal变多, 请斟酌
2、启动主库
pg_ctl start
3、创建流复制角色
psql
psql (10.3)
Type "help" for help.
postgres=# create role rep login encrypted password 'REpliCa12343231_-1!' replication;
CREATE ROLE
4、配置数据库防火墙pg_hba.conf
vi $PGDATA/pg_hba.conf
追加到配置文件末尾
# 多主机应该这样配置, 如果你在可信任网络中,也可以配置为truse代替md5,那么就不需要密码认证了
# host replication rep 主机1IP/32 md5
# host replication rep 主机2IP/32 md5
# host replication rep 主机3IP/32 md5
# 我的测试环境配置
host replication rep 127.0.0.1/32 md5
host all all 0.0.0.0/0 md5
5、使配置生效
pg_ctl reload
server signaled
6、生成流复制配置模板
cp $PGHOME/share/recovery.conf.sample $PGDATA/
cd $PGDATA
mv recovery.conf.sample recovery.done
vi recovery.done
recovery_target_timeline = 'latest'
standby_mode = on
primary_conninfo = 'host=127.0.0.1 port=1921 user=rep password=REpliCa12343231_-1!'
# host 主库ip, port 主库监听端口, user 流复制用户名, password 流复制角色rep的密码
5 创建流复制从库1
su - postgres
. ./env.sh 1922
1、使用流复制用户创建从库1
pg_basebackup -D /data01/pg/pg_root1922 -F p --waldir=/data02/pg/pg_wal_1922 -h 127.0.0.1 -p 1921 -U rep
Password: 输入rep用户的密码
WARNING: skipping special file "./.s.PGSQL.1921"
2、配置postgresql.conf(多主机环境可选项),因为我的测试环境是一台主机启动3个库,需要避免监听端口冲突
cd $PGDATA
vi postgresql.conf
port = 1922
3、配置流复制配置文件recovery.conf
cd $PGDATA
mv recovery.done recovery.conf
4、启动从库1
pg_ctl start
6 创建流复制从库2
su - postgres
. ./env.sh 1923
1、使用流复制用户创建从库2
pg_basebackup -D /data01/pg/pg_root1923 -F p --waldir=/data02/pg/pg_wal_1923 -h 127.0.0.1 -p 1921 -U rep
Password: 输入rep用户的密码
WARNING: skipping special file "./.s.PGSQL.1921"
2、配置postgresql.conf(多主机环境可选项),因为我的测试环境是一台主机启动3个库,需要避免监听端口冲突
cd $PGDATA
vi postgresql.conf
port = 1923
3、配置流复制配置文件recovery.conf
cd $PGDATA
mv recovery.done recovery.conf
4、启动从库2
pg_ctl start
7 配置多副本强同步
1、配置主节点
psql -h 127.0.0.1 -p 1921 -U postgres postgres
psql (10.3)
Type "help" for help.
postgres=# alter system set synchronous_standby_names='ANY 1 (*)';
ALTER SYSTEM
postgres=# select pg_reload_conf();
pg_reload_conf
----------------
t
(1 row)
2、配置从库1 (这样确保激活从库1后,它也要求多副本强同步)
psql -h 127.0.0.1 -p 1922 -U postgres postgres
psql (10.3)
Type "help" for help.
postgres=# alter system set synchronous_standby_names='ANY 1 (*)';
ALTER SYSTEM
postgres=# select pg_reload_conf();
pg_reload_conf
----------------
t
(1 row)
3、配置从库2 (这样确保激活从库2后,它也要求多副本强同步)
psql -h 127.0.0.1 -p 1923 -U postgres postgres
psql (10.3)
Type "help" for help.
postgres=# alter system set synchronous_standby_names='ANY 1 (*)';
ALTER SYSTEM
postgres=# select pg_reload_conf();
pg_reload_conf
----------------
t
(1 row)
7 压测,观察主从延迟
1 高并发小事务压测
创建1024个表,使用merge insert写入200亿数据。
连接到主节点执行如下:
1、建表
do language plpgsql $$
declare
begin
execute 'drop table if exists test';
execute 'create table test(id int8 primary key, info text, crt_time timestamp)';
for i in 0..1023 loop
execute format('drop table if exists test%s', i);
execute format('create table test%s (like test including all)', i);
end loop;
end;
$$;
2、创建动态数据写入函数
create or replace function dyn_pre(int8) returns void as $$
declare
suffix int8 := mod($1,1024);
begin
execute format('execute p%s(%s)', suffix, $1);
exception when others then
execute format('prepare p%s(int8) as insert into test%s values($1, md5(random()::text), now()) on conflict(id) do update set info=excluded.info,crt_time=excluded.crt_time', suffix, suffix);
execute format('execute p%s(%s)', suffix, $1);
end;
$$ language plpgsql strict;
3、创建压测脚本,使用merge insert写入200亿数据。
vi test.sql
\set id random(1,20000000000)
select dyn_pre(:id);
4、写入压测
pgbench -M prepared -n -r -P 1 -f ./test.sql -h 127.0.0.1 -p 1921 -U postgres postgres -c 56 -j 56 -T 1200000
性能如下,(在不使用多副本同步复制(synchronous_commit = local
)时,性能约8.6万tps,同步复制因为需要等从库的FEED BACK,所以RT有一定的影响。)
progress: 166.0 s, 72845.6 tps, lat 0.769 ms stddev 1.235
progress: 167.0 s, 71348.9 tps, lat 0.774 ms stddev 1.475
progress: 168.0 s, 69103.7 tps, lat 0.822 ms stddev 1.912
progress: 169.0 s, 71369.3 tps, lat 0.785 ms stddev 1.279
progress: 170.0 s, 71994.7 tps, lat 0.778 ms stddev 1.475
progress: 171.0 s, 72761.9 tps, lat 0.770 ms stddev 1.260
progress: 172.0 s, 69511.8 tps, lat 0.806 ms stddev 2.059
progress: 173.0 s, 71999.7 tps, lat 0.778 ms stddev 1.303
progress: 174.0 s, 72752.9 tps, lat 0.770 ms stddev 1.392
progress: 175.0 s, 71915.5 tps, lat 0.776 ms stddev 1.339
progress: 176.0 s, 73192.6 tps, lat 0.768 ms stddev 1.371
progress: 177.0 s, 68944.8 tps, lat 0.812 ms stddev 1.821
progress: 178.0 s, 72611.7 tps, lat 0.771 ms stddev 1.250
progress: 179.0 s, 72492.1 tps, lat 0.773 ms stddev 1.293
progress: 180.0 s, 74471.1 tps, lat 0.752 ms stddev 1.216
progress: 181.0 s, 67790.2 tps, lat 0.826 ms stddev 2.087
progress: 182.0 s, 72486.8 tps, lat 0.773 ms stddev 1.298
progress: 183.0 s, 74707.1 tps, lat 0.750 ms stddev 1.216
progress: 184.0 s, 75784.9 tps, lat 0.739 ms stddev 1.267
progress: 185.0 s, 71072.0 tps, lat 0.788 ms stddev 1.860
progress: 186.0 s, 75719.3 tps, lat 0.739 ms stddev 1.277
progress: 187.0 s, 75638.9 tps, lat 0.740 ms stddev 1.309
5、观察主备延迟
psql -h 127.0.0.1 -p 1921 -U postgres postgres
postgres=# select pg_size_pretty(pg_wal_lsn_diff(pg_current_wal_flush_lsn(),write_lsn)) delay_wal_size,* from pg_stat_replication ;
-[ RECORD 1 ]----+------------------------------
delay_wal_size | 5440 bytes ## 从库1 wal的延迟
pid | 9107
usesysid | 206200
usename | rep
application_name | walreceiver
client_addr | 127.0.0.1
client_hostname |
client_port | 50174
backend_start | 2018-03-26 16:05:26.404767+08
backend_xmin |
state | streaming
sent_lsn | 4B/93790ED0
write_lsn | 4B/93790130
flush_lsn | 4B/93790130
replay_lsn | 4B/93789F60
write_lag | 00:00:00.000055 ## 计算的延迟时间,非常小
flush_lag | 00:00:00.000128
replay_lag | 00:00:00.001399
sync_priority | 1
sync_state | quorum
-[ RECORD 2 ]----+------------------------------
delay_wal_size | 8328 bytes ## 从库2 wal的延迟
pid | 9064
usesysid | 206200
usename | rep
application_name | walreceiver
client_addr | 127.0.0.1
client_hostname |
client_port | 50166
backend_start | 2018-03-26 16:02:51.03693+08
backend_xmin |
state | streaming
sent_lsn | 4B/9378FB98
write_lsn | 4B/9378F5E8
flush_lsn | 4B/9378F5E8
replay_lsn | 4B/93788590
write_lag | 00:00:00.000224 ## 计算的延迟时间,非常小
flush_lag | 00:00:00.000224
replay_lag | 00:00:00.001519
sync_priority | 1
sync_state | quorum
6、观察iotop
# iotop
Total DISK READ : 0.00 B/s | Total DISK WRITE : 236.99 M/s
Actual DISK READ: 0.00 B/s | Actual DISK WRITE: 210.50 M/s
TID PRIO USER DISK READ DISK WRITE SWAPIN IO> COMMAND
9106 be/4 postgres 0.00 B/s 50.95 M/s 0.00 % 27.36 % postgres: wal receiver process streaming 4C/6BC37028
9063 be/4 postgres 0.00 B/s 50.69 M/s 0.00 % 26.05 % postgres: wal receiver process streaming 4C/6BC39900
9632 be/4 postgres 0.00 B/s 46.15 K/s 0.00 % 4.17 % postgres: autovacuum worker process postgres
9230 be/4 postgres 0.00 B/s 1692.27 K/s 0.00 % 3.94 % postgres: postgres postgres 127.0.0.1(50218) SELECT
9217 be/4 postgres 0.00 B/s 1784.58 K/s 0.00 % 3.79 % postgres: postgres postgres 127.0.0.1(50210) idle
9198 be/4 postgres 0.00 B/s 1884.58 K/s 0.00 % 3.70 % postgres: postgres postgres 127.0.0.1(50198) SELECT
9270 be/4 postgres 0.00 B/s 1746.12 K/s 0.00 % 3.69 % postgres: postgres postgres 127.0.0.1(50286) SELECT
9202 be/4 postgres 0.00 B/s 1723.04 K/s 0.00 % 3.67 % postgres: postgres postgres 127.0.0.1(50200) SELECT
9172 be/4 postgres 0.00 B/s 1592.27 K/s 0.00 % 3.52 % postgres: postgres postgres 127.0.0.1(50184) idle
9245 be/4 postgres 0.00 B/s 2046.11 K/s 0.00 % 3.51 % postgres: postgres postgres 127.0.0.1(50236) SELECT
9226 be/4 postgres 0.00 B/s 1861.50 K/s 0.00 % 3.45 % postgres: postgres postgres 127.0.0.1(50216) SELECT
9249 be/4 postgres 0.00 B/s 1399.97 K/s 0.00 % 3.39 % postgres: postgres postgres 127.0.0.1(50244) SELECT
9252 be/4 postgres 0.00 B/s 1784.58 K/s 0.00 % 3.35 % postgres: postgres postgres 127.0.0.1(50250) SELECT
9247 be/4 postgres 0.00 B/s 1938.42 K/s 0.00 % 3.35 % postgres: postgres postgres 127.0.0.1(50240) SELECT
9274 be/4 postgres 0.00 B/s 1853.81 K/s 0.00 % 3.34 % postgres: postgres postgres 127.0.0.1(50294) SELECT
9211 be/4 postgres 0.00 B/s 1907.65 K/s 0.00 % 3.32 % postgres: postgres postgres 127.0.0.1(50206) SELECT
9248 be/4 postgres 0.00 B/s 1753.81 K/s 0.00 % 3.32 % postgres: postgres postgres 127.0.0.1(50242) BIND
9273 be/4 postgres 0.00 B/s 1838.42 K/s 0.00 % 3.32 % postgres: postgres postgres 127.0.0.1(50292) SELECT
9244 be/4 postgres 0.00 B/s 1523.04 K/s 0.00 % 3.31 % postgres: postgres postgres 127.0.0.1(50234) SELECT
2 高并发大事务压测
创建1024个表,大批量INSERT。
连接到主节点执行如下:
1、建表
do language plpgsql $$
declare
begin
execute 'drop table if exists test';
execute 'create table test(id int8, info text, crt_time timestamp)';
for i in 0..1023 loop
execute format('drop table if exists test%s', i);
execute format('create table test%s (like test including all)', i);
end loop;
end;
$$;
2、创建动态数据写入函数
create or replace function dyn_pre(int8) returns void as $$
declare
suffix int8 := mod($1,1024);
begin
execute format('execute p%s(%s)', suffix, $1);
exception when others then
execute format('prepare p%s(int8) as insert into test%s select generate_series(1,10000), %L, now()', suffix, suffix, 'postgres: wal receiver process streaming 4C/6BC37028');
execute format('execute p%s(%s)', suffix, $1);
end;
$$ language plpgsql strict;
3、创建压测脚本,批量写入,每批写入1万条。
vi test.sql
\set id random(1,20000000000)
select dyn_pre(:id);
4、写入压测,开启批量写之后,每秒写入峰值达到了200万行。
progress: 48.0 s, 168.0 tps, lat 329.783 ms stddev 36.013
progress: 49.0 s, 168.0 tps, lat 334.085 ms stddev 31.487
progress: 50.0 s, 143.0 tps, lat 363.151 ms stddev 43.855
progress: 51.0 s, 168.0 tps, lat 345.992 ms stddev 42.808
progress: 52.0 s, 168.0 tps, lat 356.376 ms stddev 31.336
progress: 53.0 s, 117.0 tps, lat 387.883 ms stddev 61.924
progress: 54.0 s, 203.1 tps, lat 333.567 ms stddev 97.568
progress: 55.0 s, 176.0 tps, lat 324.117 ms stddev 36.841
progress: 56.0 s, 137.0 tps, lat 356.819 ms stddev 34.533
progress: 57.0 s, 174.0 tps, lat 331.817 ms stddev 46.634
progress: 58.0 s, 172.0 tps, lat 329.905 ms stddev 32.809
progress: 59.0 s, 168.0 tps, lat 315.655 ms stddev 27.721
progress: 60.0 s, 149.0 tps, lat 411.454 ms stddev 91.748
progress: 61.0 s, 159.0 tps, lat 338.382 ms stddev 49.510
progress: 62.0 s, 126.0 tps, lat 404.776 ms stddev 92.685
5、观察主备延迟,发送WAL有一定延迟,但是并不影响写入。
postgres=# select pg_size_pretty(pg_wal_lsn_diff(pg_current_wal_flush_lsn(),write_lsn)) delay_wal_size,* from pg_stat_replication ;
-[ RECORD 1 ]----+------------------------------
delay_wal_size | 57 MB ## 延迟了57 MB,但是仅提交是需要等WAL的位点,所以并不影响
pid | 9107
usesysid | 206200
usename | rep
application_name | walreceiver
client_addr | 127.0.0.1
client_hostname |
client_port | 50174
backend_start | 2018-03-26 16:05:26.404767+08
backend_xmin |
state | streaming
sent_lsn | 4E/58040000
write_lsn | 4E/56000000
flush_lsn | 4E/56000000
replay_lsn | 4D/19D00ED0
write_lag | 00:00:00.251625
flush_lag | 00:00:00.251625
replay_lag | 00:00:28.018643
sync_priority | 1
sync_state | quorum
-[ RECORD 2 ]----+------------------------------
delay_wal_size | 41 MB
pid | 9064
usesysid | 206200
usename | rep
application_name | walreceiver
client_addr | 127.0.0.1
client_hostname |
client_port | 50166
backend_start | 2018-03-26 16:02:51.03693+08
backend_xmin |
state | streaming
sent_lsn | 4E/58012000
write_lsn | 4E/57000000
flush_lsn | 4E/57000000
replay_lsn | 4D/1A47B998
write_lag | 00:00:00.069438
flush_lag | 00:00:00.069438
replay_lag | 00:00:27.856028
sync_priority | 1
sync_state | quorum
6、观察IO使用情况,显然现在磁盘读写都达到了1GB/s多,同时两个备库的流复制接收进程,也达到了400多MB/s的写。同时观察到有一些进程在提交事务时,正在等待commit wal record的位点同步到至少一个从库。
iotop
Total DISK READ : 23.10 K/s | Total DISK WRITE : 1415.20 M/s
Actual DISK READ: 23.10 K/s | Actual DISK WRITE: 1342.53 M/s
TID PRIO USER DISK READ DISK WRITE SWAPIN IO> COMMAND
9063 be/4 postgres 23.10 K/s 431.26 M/s 0.00 % 38.41 % postgres: wal receiver process streaming 4F/A0000000
9106 be/4 postgres 0.00 B/s 415.86 M/s 0.00 % 35.86 % postgres: wal receiver process streaming 4F/9F000000
941 be/3 root 0.00 B/s 311.89 K/s 0.00 % 26.99 % [jbd2/vdc1-8]
10281 be/4 root 0.00 B/s 0.00 B/s 0.00 % 17.40 % [kworker/u112:0]
8918 be/4 postgres 0.00 B/s 95.19 M/s 0.00 % 10.89 % postgres: wal writer process
10255 be/4 postgres 0.00 B/s 18.53 M/s 0.00 % 5.24 % postgres: postgres postgres 127.0.0.1(50610) SELECT
10188 be/4 postgres 0.00 B/s 17.63 M/s 0.00 % 4.32 % postgres: postgres postgres 127.0.0.1(50540) SELECT waiting for 4F/A192D6F8
10250 be/4 postgres 0.00 B/s 11.20 M/s 0.00 % 4.22 % postgres: postgres postgres 127.0.0.1(50600) SELECT
10191 be/4 postgres 0.00 B/s 11.91 M/s 0.00 % 4.10 % postgres: postgres postgres 127.0.0.1(50542) SELECT waiting for 4F/A1881A48
10230 be/4 postgres 0.00 B/s 31.88 M/s 0.00 % 3.42 % postgres: postgres postgres 127.0.0.1(50566) SELECT
10254 be/4 postgres 0.00 B/s 15.70 M/s 0.00 % 3.27 % postgres: postgres postgres 127.0.0.1(50608) SELECT waiting for 4F/A1942CA8
10236 be/4 postgres 0.00 B/s 3.20 M/s 0.00 % 2.61 % postgres: postgres postgres 127.0.0.1(50572) SELECT
10234 be/4 postgres 0.00 B/s 14.05 M/s 0.00 % 2.58 % postgres: postgres postgres 127.0.0.1(50568) SELECT waiting for 4F/A0BAC028
10259 be/4 postgres 0.00 B/s 3.17 M/s 0.00 % 2.48 % postgres: postgres postgres 127.0.0.1(50618) SELECT
10269 be/4 postgres 0.00 B/s 3.19 M/s 0.00 % 2.48 % postgres: postgres postgres 127.0.0.1(50638) SELECT
10194 be/4 postgres 0.00 B/s 5.54 M/s 0.00 % 2.46 % postgres: postgres postgres 127.0.0.1(50544) SELECT waiting for 4F/A0DA0EB8
10186 be/4 postgres 0.00 B/s 3.22 M/s 0.00 % 2.45 % postgres: postgres postgres 127.0.0.1(50538) SELECT
10260 be/4 postgres 0.00 B/s 3.14 M/s 0.00 % 2.45 % postgres: postgres postgres 127.0.0.1(50620) SELECT
10169 be/4 postgres 0.00 B/s 3.17 M/s 0.00 % 2.42 % postgres: postgres postgres 127.0.0.1(50528) SELECT
10213 be/4 postgres 0.00 B/s 3.14 M/s 0.00 % 2.39 % postgres: postgres postgres 127.0.0.1(50558) SELECT
10176 be/4 postgres 0.00 B/s 3.15 M/s 0.00 % 2.38 % postgres: postgres postgres 127.0.0.1(50532) SELECT
10262 be/4 postgres 0.00 B/s 3.18 M/s 0.00 % 2.36 % postgres: postgres postgres 127.0.0.1(50624) SELECT
10241 be/4 postgres 0.00 B/s 3.40 M/s 0.00 % 2.35 % postgres: postgres postgres 127.0.0.1(50582) SELECT
10265 be/4 postgres 0.00 B/s 3.12 M/s 0.00 % 2.33 % postgres: postgres postgres 127.0.0.1(50630) SELECT
10172 be/4 postgres 0.00 B/s 3.12 M/s 0.00 % 2.33 % postgres: postgres postgres 127.0.0.1(50530) SELECT
10246 be/4 postgres 0.00 B/s 3.14 M/s 0.00 % 2.33 % postgres: postgres postgres 127.0.0.1(50592) SELECT
10243 be/4 postgres 0.00 B/s 3.14 M/s 0.00 % 2.33 % postgres: postgres postgres 127.0.0.1(50586) SELECT
7、关闭压测,瞬间追平
postgres=# select pg_size_pretty(pg_wal_lsn_diff(pg_current_wal_flush_lsn(),write_lsn)) delay_wal_size,* from pg_stat_replication ;
-[ RECORD 1 ]----+------------------------------
delay_wal_size | 0 bytes
pid | 9107
usesysid | 206200
usename | rep
application_name | walreceiver
client_addr | 127.0.0.1
client_hostname |
client_port | 50174
backend_start | 2018-03-26 16:05:26.404767+08
backend_xmin |
state | streaming
sent_lsn | 51/70F46070
write_lsn | 51/70F46070
flush_lsn | 51/70F46070
replay_lsn | 4F/3420CF60
write_lag | 00:00:00.00009
flush_lag | 00:00:00.000194
replay_lag | 00:01:02.852602
sync_priority | 1
sync_state | quorum
-[ RECORD 2 ]----+------------------------------
delay_wal_size | 0 bytes
pid | 9064
usesysid | 206200
usename | rep
application_name | walreceiver
client_addr | 127.0.0.1
client_hostname |
client_port | 50166
backend_start | 2018-03-26 16:02:51.03693+08
backend_xmin |
state | streaming
sent_lsn | 51/70F46070
write_lsn | 51/70F46070
flush_lsn | 51/70F46070
replay_lsn | 4F/38846D10
write_lag | 00:00:00.000089
flush_lag | 00:00:00.000198
replay_lag | 00:01:02.58513
sync_priority | 1
sync_state | quorum
8 模拟挂掉1台从库
1、关闭从库1
pg_ctl stop -m fast -D /data01/pg/pg_root1922
2、从主节点观察从库状态
postgres=# select pg_size_pretty(pg_wal_lsn_diff(pg_current_wal_flush_lsn(),write_lsn)) delay_wal_size,* from pg_stat_replication ;
-[ RECORD 1 ]----+------------------------------
delay_wal_size | 0 bytes
pid | 9107
usesysid | 206200
usename | rep
application_name | walreceiver
client_addr | 127.0.0.1
client_hostname |
client_port | 50174
backend_start | 2018-03-26 16:05:26.404767+08
backend_xmin |
state | streaming
sent_lsn | 51/7117F428
write_lsn | 51/7117F428
flush_lsn | 51/7117F428
replay_lsn | 51/7117F428
write_lag |
flush_lag |
replay_lag |
sync_priority | 1
sync_state | quorum
3、因为还有一个从库,可以继续读写主库
pgbench -M prepared -n -r -P 1 -f ./test.sql -h 127.0.0.1 -p 1921 -U postgres postgres -c 56 -j 56 -T 1200000
progress: 1.0 s, 157.9 tps, lat 283.577 ms stddev 68.653
progress: 2.0 s, 198.1 tps, lat 289.255 ms stddev 50.272
progress: 3.0 s, 203.0 tps, lat 269.144 ms stddev 31.036
progress: 4.0 s, 235.0 tps, lat 259.014 ms stddev 24.828
progress: 5.0 s, 210.0 tps, lat 263.051 ms stddev 30.233
6、观察剩余的1个从库的延迟
postgres=# select pg_size_pretty(pg_wal_lsn_diff(pg_current_wal_flush_lsn(),write_lsn)) delay_wal_size,* from pg_stat_replication ;
-[ RECORD 1 ]----+------------------------------
delay_wal_size | 53 MB
pid | 9107
usesysid | 206200
usename | rep
application_name | walreceiver
client_addr | 127.0.0.1
client_hostname |
client_port | 50174
backend_start | 2018-03-26 16:05:26.404767+08
backend_xmin |
state | streaming
sent_lsn | 52/78498000
write_lsn | 52/76000000
flush_lsn | 52/76000000
replay_lsn | 51/E2B88798
write_lag | 00:00:00.132428
flush_lag | 00:00:00.132428
replay_lag | 00:00:09.864225
sync_priority | 1
sync_state | quorum
9 模拟挂掉2台从库
1、关闭第二台从库
pg_ctl stop -m fast -D /data01/pg/pg_root1923
2、可以看到批量写的压测进程TPS跌到0了,因为所有事务提交都处于等待状态
progress: 58.0 s, 0.0 tps, lat -nan ms stddev -nan
progress: 59.0 s, 0.0 tps, lat -nan ms stddev -nan
progress: 60.0 s, 0.0 tps, lat -nan ms stddev -nan
progress: 61.0 s, 0.0 tps, lat -nan ms stddev -nan
progress: 62.0 s, 0.0 tps, lat -nan ms stddev -nan
progress: 63.0 s, 0.0 tps, lat -nan ms stddev -nan
progress: 64.0 s, 0.0 tps, lat -nan ms stddev -nan
progress: 65.0 s, 0.0 tps, lat -nan ms stddev -nan
progress: 66.0 s, 0.0 tps, lat -nan ms stddev -nan
3、此时观察主库的从库状态,两个从库已经下线了
postgres=# select pg_size_pretty(pg_wal_lsn_diff(pg_current_wal_flush_lsn(),write_lsn)) delay_wal_size,* from pg_stat_replication ;
(0 rows)
4、观察当前的会话状态,批量写的事务结束状态被冻结,等待同步提交结束才能返回客户端事务结束的状态。
postgres=# select usename,datname,wait_event_type,wait_event,query from pg_stat_activity ;
usename | datname | wait_event_type | wait_event | query
----------+----------+-----------------+---------------------+---------------------------------------------------------------------------------
| | Activity | AutoVacuumMain |
postgres | | Activity | LogicalLauncherMain |
postgres | postgres | IPC | SyncRep | select dyn_pre($1);
postgres | postgres | | | select usename,datname,wait_event_type,wait_event,query from pg_stat_activity ;
postgres | postgres | IPC | SyncRep | select dyn_pre($1);
postgres | postgres | IPC | SyncRep | select dyn_pre($1);
postgres | postgres | IPC | SyncRep | select dyn_pre($1);
postgres | postgres | IPC | SyncRep | select dyn_pre($1);
postgres | postgres | IPC | SyncRep | select dyn_pre($1);
postgres | postgres | IPC | SyncRep | select dyn_pre($1);
postgres | postgres | IPC | SyncRep | select dyn_pre($1);
postgres | postgres | IPC | SyncRep | select dyn_pre($1);
postgres | postgres | IPC | SyncRep | select dyn_pre($1);
postgres | postgres | IPC | SyncRep | select dyn_pre($1);
postgres | postgres | IPC | SyncRep | select dyn_pre($1);
postgres | postgres | IPC | SyncRep | select dyn_pre($1);
postgres | postgres | IPC | SyncRep | select dyn_pre($1);
postgres | postgres | IPC | SyncRep | select dyn_pre($1);
postgres | postgres | IPC | SyncRep | select dyn_pre($1);
postgres | postgres | IPC | SyncRep | select dyn_pre($1);
postgres | postgres | IPC | SyncRep | select dyn_pre($1);
postgres | postgres | IPC | SyncRep | select dyn_pre($1);
......
5、在top中也可以看到其状态,正在等待的WAL COMMIT RECORD的位点
11530 postgres 20 0 25.247g 8744 4024 S 0.0 0.0 0:05.85 postgres: postgres postgres 127.0.0.1(50650) SELECT waiting for 54/48223A48
11531 postgres 20 0 25.247g 8748 4024 S 0.0 0.0 0:06.12 postgres: postgres postgres 127.0.0.1(50652) SELECT waiting for 54/4A8CB450
11535 postgres 20 0 25.247g 8744 4024 S 0.0 0.0 0:06.15 postgres: postgres postgres 127.0.0.1(50654) SELECT waiting for 54/484E8280
11538 postgres 20 0 25.247g 8704 4024 S 0.0 0.0 0:06.15 postgres: postgres postgres 127.0.0.1(50656) SELECT waiting for 54/4A8AE1D8
11542 postgres 20 0 25.247g 8744 4024 S 0.0 0.0 0:06.26 postgres: postgres postgres 127.0.0.1(50658) SELECT waiting for 54/4828C590
11545 postgres 20 0 25.247g 8664 4024 S 0.0 0.0 0:06.11 postgres: postgres postgres 127.0.0.1(50660) SELECT waiting for 54/4A92D238
11546 postgres 20 0 25.247g 8748 4024 S 0.0 0.0 0:06.52 postgres: postgres postgres 127.0.0.1(50662) SELECT waiting for 54/48F44E18
11549 postgres 20 0 25.247g 8584 4024 S 0.0 0.0 0:06.27 postgres: postgres postgres 127.0.0.1(50664) SELECT waiting for 54/47E12960
11551 postgres 20 0 25.247g 8668 4024 S 0.0 0.0 0:06.38 postgres: postgres postgres 127.0.0.1(50666) SELECT waiting for 54/4A492EC8
11556 postgres 20 0 25.247g 8724 4024 S 0.0 0.0 0:06.34 postgres: postgres postgres 127.0.0.1(50668) SELECT waiting for 54/47E09540
11558 postgres 20 0 25.247g 8676 4024 S 0.0 0.0 0:06.07 postgres: postgres postgres 127.0.0.1(50670) SELECT waiting for 54/4A1F0CB8
11561 postgres 20 0 25.247g 8648 4024 S 0.0 0.0 0:06.03 postgres: postgres postgres 127.0.0.1(50672) SELECT waiting for 54/48C08120
11564 postgres 20 0 25.247g 8624 4024 S 0.0 0.0 0:05.98 postgres: postgres postgres 127.0.0.1(50674) SELECT waiting for 54/48AE6110
11568 postgres 20 0 25.247g 8652 4024 S 0.0 0.0 0:05.83 postgres: postgres postgres 127.0.0.1(50676) SELECT waiting for 54/48B4FB18
11571 postgres 20 0 25.247g 8756 4024 S 0.0 0.0 0:06.24 postgres: postgres postgres 127.0.0.1(50678) SELECT waiting for 54/4A905DD8
11575 postgres 20 0 25.247g 8708 4024 S 0.0 0.0 0:06.40 postgres: postgres postgres 127.0.0.1(50680) SELECT waiting for 54/4A7F4228
11578 postgres 20 0 25.247g 8664 4024 S 0.0 0.0 0:06.13 postgres: postgres postgres 127.0.0.1(50682) SELECT waiting for 54/4A487990
......
10 模拟从库恢复
1、启动从库
pg_ctl start -D /data01/pg/pg_root1922
pg_ctl start -D /data01/pg/pg_root1923
2、可以看到启动后,从库开始从上一个检查点开始恢复。
12388 postgres 20 0 25.238g 3228 1324 R 98.3 0.0 0:52.31 postgres: startup process recovering 000000010000005200000014
12401 postgres 20 0 25.238g 3228 1324 R 97.4 0.0 0:17.52 postgres: startup process recovering 00000001000000510000000F
3、从主节点观察从库状态
其中一个从库追平
postgres=# select pg_size_pretty(pg_wal_lsn_diff(pg_current_wal_flush_lsn(),write_lsn)) delay_wal_size,* from pg_stat_replication ;
-[ RECORD 1 ]----+------------------------------
delay_wal_size | 0 bytes
pid | 12396
usesysid | 206200
usename | rep
application_name | walreceiver
client_addr | 127.0.0.1
client_hostname |
client_port | 50758
backend_start | 2018-03-26 16:52:19.321112+08
backend_xmin |
state | streaming
sent_lsn | 56/956AB438
write_lsn | 56/956AB438
flush_lsn | 56/956AB438
replay_lsn | 54/A36CDE38
write_lag | 00:00:00.000083
flush_lag | 00:00:00.000146
replay_lag | 00:01:17.75422
sync_priority | 1
sync_state | quorum
有一个从库追平后,由于我们配置的同步提交只需要1个副本即可,所以1个从库追平后,等待就解除了,开始继续批量写入
progress: 267.0 s, 0.0 tps, lat -nan ms stddev -nan
progress: 268.0 s, 0.0 tps, lat -nan ms stddev -nan
progress: 269.0 s, 137.1 tps, lat 90422.766 ms stddev 108453.563
progress: 270.0 s, 210.0 tps, lat 270.240 ms stddev 26.268
progress: 271.0 s, 205.0 tps, lat 270.547 ms stddev 26.334
progress: 272.0 s, 210.0 tps, lat 279.882 ms stddev 29.748
progress: 273.0 s, 208.0 tps, lat 262.075 ms stddev 25.902
progress: 274.0 s, 208.0 tps, lat 270.541 ms stddev 28.560
progress: 275.0 s, 167.9 tps, lat 275.042 ms stddev 27.207
progress: 276.0 s, 57.0 tps, lat 1029.869 ms stddev 154.074
progress: 277.0 s, 209.0 tps, lat 291.212 ms stddev 67.857
progress: 278.0 s, 201.0 tps, lat 282.762 ms stddev 31.040
progress: 279.0 s, 195.0 tps, lat 277.304 ms stddev 47.745
progress: 280.0 s, 230.0 tps, lat 273.271 ms stddev 32.877
当第二个从库也进入stream状态后,开始追
postgres=# select pg_size_pretty(pg_wal_lsn_diff(pg_current_wal_flush_lsn(),write_lsn)) delay_wal_size,* from pg_stat_replication ;
-[ RECORD 1 ]----+------------------------------
delay_wal_size | 7992 MB
pid | 13012
usesysid | 206200
usename | rep
application_name | walreceiver
client_addr | 127.0.0.1
client_hostname |
client_port | 50760
backend_start | 2018-03-26 16:54:39.246404+08
backend_xmin |
state | catchup ## 状态为追
sent_lsn | 54/A31A0000
write_lsn | 54/A2000000
flush_lsn | 54/A2000000
replay_lsn | 54/6D037C78
write_lag | 00:00:05.308718
flush_lag | 00:00:05.308718
replay_lag | 00:00:05.308718
sync_priority | 1
sync_state | potential ## 这个节点还没有追平,所以是待定状态
-[ RECORD 2 ]----+------------------------------
delay_wal_size | 0 bytes
pid | 12396
usesysid | 206200
usename | rep
application_name | walreceiver
client_addr | 127.0.0.1
client_hostname |
client_port | 50758
backend_start | 2018-03-26 16:52:19.321112+08
backend_xmin |
state | streaming ## 状态为streaming
sent_lsn | 56/957C9D80
write_lsn | 56/957C9D80
flush_lsn | 56/957C9D80
replay_lsn | 55/30982DC0
write_lag | 00:00:00.00009
flush_lag | 00:00:00.000147
replay_lag | 00:01:28.262611
sync_priority | 1
sync_state | quorum ## 同步状态为quorum
第二个从库很快就追平了
postgres=# select pg_size_pretty(pg_wal_lsn_diff(pg_current_wal_flush_lsn(),write_lsn)) delay_wal_size,* from pg_stat_replication ;
-[ RECORD 1 ]----+------------------------------
delay_wal_size | 0 bytes
pid | 13012
usesysid | 206200
usename | rep
application_name | walreceiver
client_addr | 127.0.0.1
client_hostname |
client_port | 50760
backend_start | 2018-03-26 16:54:39.246404+08
backend_xmin |
state | streaming
sent_lsn | 56/957E21E0
write_lsn | 56/957E21E0
flush_lsn | 56/957E21E0
replay_lsn | 55/501B2D28
write_lag | 00:00:00.000071
flush_lag | 00:00:00.000126
replay_lag | 00:00:38.590875
sync_priority | 1
sync_state | quorum ## 追平后,就是quorum状态了
-[ RECORD 2 ]----+------------------------------
delay_wal_size | 0 bytes
pid | 12396
usesysid | 206200
usename | rep
application_name | walreceiver
client_addr | 127.0.0.1
client_hostname |
client_port | 50758
backend_start | 2018-03-26 16:52:19.321112+08
backend_xmin |
state | streaming
sent_lsn | 56/957E21E0
write_lsn | 56/957E21E0
flush_lsn | 56/957E21E0
replay_lsn | 56/F12A2D0
write_lag | 00:00:00.00018
flush_lag | 00:00:00.000227
replay_lag | 00:01:46.434071
sync_priority | 1
sync_state | quorum
11 正常情况下的主备切换
1、继续批量写入压测
pgbench -M prepared -n -r -P 1 -f ./test.sql -h 127.0.0.1 -p 1921 -U postgres postgres -c 56 -j 56 -T 1200000
2、正常关闭主库
pg_ctl stop -m fast -D /data01/pg/pg_root1921
3、检查从库1、2哪个位点最新
从库1接收到的WAL位点以及回放到的位点
psql -h 127.0.0.1 -p 1922
psql (10.3)
Type "help" for help.
postgres=# select pg_last_wal_receive_lsn();
pg_last_wal_receive_lsn
-------------------------
57/60000098
(1 row)
postgres=# select pg_last_wal_replay_lsn();
pg_last_wal_replay_lsn
------------------------
57/60000098
(1 row)
从库2接收到的WAL位点以及回放到的位点
psql -h 127.0.0.1 -p 1923
psql (10.3)
Type "help" for help.
postgres=# select pg_last_wal_receive_lsn();
pg_last_wal_receive_lsn
-------------------------
57/60000098
(1 row)
postgres=# select pg_last_wal_replay_lsn();
pg_last_wal_replay_lsn
------------------------
57/60000098
(1 row)
使用pg_waldump也能观察到对应wal文件已经到达这个位置
pg_waldump /data02/pg/pg_wal_1923/000000010000005700000060
rmgr: XLOG len (rec/tot): 106/ 106, tx: 0, lsn: 57/60000028, prev 57/5F0D6468, desc: CHECKPOINT_SHUTDOWN redo 57/60000028; tli 1; prev tli 1; fpw true; xid 0:2205203730; oid 217962; multi 1; offset 0; oldest xid 2136558886 in DB 1; oldest multi 1 in DB 13805; oldest/newest commit timestamp xid: 0/0; oldest running xid 0; shutdown
pg_waldump: FATAL: error in WAL record at 57/60000028: invalid record length at 57/60000098: wanted 24, got 0
4、激活最新从库作为新主库
激活pg_last_wal_receive_lsn最大的,如果有多个,则选择其中pg_last_wal_replay_lsn最大的。
例如激活从库1(可以使用promote,或者写trigger file。使用promote很方便)
pg_ctl promote -D /data01/pg/pg_root1922
waiting for server to promote.... done
server promoted
5、另一个从库作为新主库的从库
修改recovery.conf的新主库连接信息
vi /data01/pg/pg_root1923/recovery.conf
primary_conninfo = 'host=127.0.0.1 port=1922 user=rep password=REpliCa12343231_-1!'
重启这个从库
pg_ctl stop -m fast -D /data01/pg/pg_root1923
pg_ctl start -D /data01/pg/pg_root1923
6、老的主库,作为新的主库的从库
修改recovery.conf的新主库连接信息
mv /data01/pg/pg_root1921/recovery.done /data01/pg/pg_root1921/recovery.conf
vi /data01/pg/pg_root1921/recovery.conf
primary_conninfo = 'host=127.0.0.1 port=1922 user=rep password=REpliCa12343231_-1!'
启动老主库
pg_ctl start -D /data01/pg/pg_root1921
7、观察新的主库的两个从库是否正常
psql -h 127.0.0.1 -p 1922
postgres=# select pg_size_pretty(pg_wal_lsn_diff(pg_current_wal_flush_lsn(),write_lsn)) delay_wal_size,* from pg_stat_replication ;
-[ RECORD 1 ]----+------------------------------
delay_wal_size | 0 bytes
pid | 13925
usesysid | 206200
usename | rep
application_name | walreceiver
client_addr | 127.0.0.1
client_hostname |
client_port | 47660
backend_start | 2018-03-26 17:26:49.093754+08
backend_xmin |
state | streaming
sent_lsn | 57/600018B0
write_lsn | 57/600018B0
flush_lsn | 57/600018B0
replay_lsn | 57/600018B0
write_lag |
flush_lag |
replay_lag |
sync_priority | 1
sync_state | quorum
-[ RECORD 2 ]----+------------------------------
delay_wal_size | 0 bytes
pid | 13906
usesysid | 206200
usename | rep
application_name | walreceiver
client_addr | 127.0.0.1
client_hostname |
client_port | 47658
backend_start | 2018-03-26 17:22:08.461081+08
backend_xmin |
state | streaming
sent_lsn | 57/600018B0
write_lsn | 57/600018B0
flush_lsn | 57/600018B0
replay_lsn | 57/600018B0
write_lag |
flush_lag |
replay_lag |
sync_priority | 1
sync_state | quorum
8、连接到新的主库进行批量写入压测
pgbench -M prepared -n -r -P 1 -f ./test.sql -h 127.0.0.1 -p 1922 -U postgres postgres -c 56 -j 56 -T 1200000
9、观察新的主库压测时的从库延迟
postgres=# select pg_size_pretty(pg_wal_lsn_diff(pg_current_wal_flush_lsn(),write_lsn)) delay_wal_size,* from pg_stat_replication ;
-[ RECORD 1 ]----+------------------------------
delay_wal_size | 18 MB
pid | 13925
usesysid | 206200
usename | rep
application_name | walreceiver
client_addr | 127.0.0.1
client_hostname |
client_port | 47660
backend_start | 2018-03-26 17:26:49.093754+08
backend_xmin |
state | streaming
sent_lsn | 57/E219E0C0
write_lsn | 57/E1000000
flush_lsn | 57/E1000000
replay_lsn | 57/BBFD57A0
write_lag | 00:00:00.23305
flush_lag | 00:00:00.23305
replay_lag | 00:00:03.917973
sync_priority | 1
sync_state | quorum
-[ RECORD 2 ]----+------------------------------
delay_wal_size | 66 MB
pid | 13906
usesysid | 206200
usename | rep
application_name | walreceiver
client_addr | 127.0.0.1
client_hostname |
client_port | 47658
backend_start | 2018-03-26 17:22:08.461081+08
backend_xmin |
state | streaming
sent_lsn | 57/E042E000
write_lsn | 57/DE000000
flush_lsn | 57/DE000000
replay_lsn | 57/B75E03D0
write_lag | 00:00:00.602368
flush_lag | 00:00:00.602368
replay_lag | 00:00:04.278079
sync_priority | 1
sync_state | quorum
12 异常情况下的主备切换
异常情况,指不知道主库在什么状况下的切换。本例要防止数据丢失,防止脑裂的话需要控制2个从库
如果总共有5个从库,如果配置如下
synchronous_standby_names = 'ANY 2 (*)'
那么需要控制 5-2+1=4个或以上从库,如果需要切换,就可以认为绝对不会出现脑裂或丢数据的情况。
因为冻结了4个从库后,主库剩下的从库只有1个,就无法满足2个副本,所以不可能再提交并返回用户事务状态。
1、继续批量写入压测
pgbench -M prepared -n -r -P 1 -f ./test.sql -h 127.0.0.1 -p 1922 -U postgres postgres -c 56 -j 56 -T 1200000
2、控制2个从库(控制足够数量的从库(关闭),目前没有好的方法能够冻结它接收新的WAL,只能冻结replay,所以我们使用关闭的手段先。)
关闭从库1
pg_ctl stop -m fast -D /data01/pg/pg_root1921
关闭从库2
pg_ctl stop -m fast -D /data01/pg/pg_root1923
观察到压测HANG住,事务正在等待至少1个从库响应已接收到至少一份REDO副本的FEEDBACK。
progress: 74.0 s, 22.0 tps, lat 282.421 ms stddev 26.183
progress: 75.0 s, 0.0 tps, lat -nan ms stddev -nan
progress: 76.0 s, 0.0 tps, lat -nan ms stddev -nan
progress: 77.0 s, 0.0 tps, lat -nan ms stddev -nan
progress: 78.0 s, 0.0 tps, lat -nan ms stddev -nan
progress: 79.0 s, 0.0 tps, lat -nan ms stddev -nan
progress: 80.0 s, 0.0 tps, lat -nan ms stddev -nan
3、检查从库1、2哪个位点最新
因为数据库已经关闭了,可以通过pg_waldump来观察位点。
从库1位点5A/52D7DF60
ll -rth /data02/pg/pg_wal_1921|tail -n 3
drwx------ 2 postgres postgres 232K Mar 26 17:41 archive_status
-rw------- 1 postgres postgres 16M Mar 26 17:41 000000020000005A00000052
-rw------- 1 postgres postgres 16M Mar 26 17:41 000000020000005A00000053
pg_waldump /data02/pg/pg_wal_1921/000000020000005A00000053|tail -n 3
pg_waldump: FATAL: could not find a valid record after 5A/53000000
pg_waldump /data02/pg/pg_wal_1921/000000020000005A00000052|tail -n 3
pg_waldump: FATAL: error in WAL record at 5A/52D7DF60: invalid magic number 0000 in log segment 000000000000005A00000052, offset 14147584
rmgr: Heap len (rec/tot): 127/ 127, tx: 2205214610, lsn: 5A/52D7DE60, prev 5A/52D7DDE0, desc: INSERT off 63, blkref #0: rel 1663/13806/217026 blk 5741
rmgr: Heap len (rec/tot): 127/ 127, tx: 2205214606, lsn: 5A/52D7DEE0, prev 5A/52D7DE60, desc: INSERT off 68, blkref #0: rel 1663/13806/217350 blk 4813
rmgr: Heap len (rec/tot): 127/ 127, tx: 2205214617, lsn: 5A/52D7DF60, prev 5A/52D7DEE0, desc: INSERT off 59, blkref #0: rel 1663/13806/217074 blk 5101
从库2位点5B/11000000
ll -rth /data02/pg/pg_wal_1923|tail -n 3
-rw------- 1 postgres postgres 16M Mar 26 17:41 000000020000005B00000010
drwx------ 2 postgres postgres 248K Mar 26 17:41 archive_status
-rw------- 1 postgres postgres 16M Mar 26 17:41 000000020000005B00000011
pg_waldump /data02/pg/pg_wal_1923/000000020000005B00000011|tail -n 3
pg_waldump: FATAL: could not find a valid record after 5B/11000000
pg_waldump /data02/pg/pg_wal_1923/000000020000005B00000010|tail -n 3
rmgr: Heap len (rec/tot): 127/ 127, tx: 2205217476, lsn: 5B/10FFFE18, prev 5B/10FFFD98, desc: INSERT off 7, blkref #0: rel 1663/13806/213270 blk 5397
rmgr: Heap len (rec/tot): 127/ 127, tx: 2205217465, lsn: 5B/10FFFE98, prev 5B/10FFFE18, desc: INSERT off 35, blkref #0: rel 1663/13806/215400 blk 5142
rmgr: Heap len (rec/tot): 127/ 127, tx: 2205217482, lsn: 5B/10FFFF18, prev 5B/10FFFE98, desc: INSERT off 55, blkref #0: rel 1663/13806/216612 blk 5638
选择从库2作为新的主库
4、激活最新从库作为新主库
mv /data01/pg/pg_root1923/recovery.conf /data01/pg/pg_root1923/recovery.done
pg_ctl start -D /data01/pg/pg_root1923
5、另一个从库作为新主库的从库
vi /data01/pg/pg_root1921/recovery.conf
primary_conninfo = 'host=127.0.0.1 port=1923 user=rep password=REpliCa12343231_-1!'
pg_ctl start -D /data01/pg/pg_root1921
6、关闭老的主库,可以使用pg_rewind连接到新主库修正它(但是我们一开始需要设置参数wal_log_hints = on
,同时需要使用超级用户连接新主库进行修复)
详见
《PostgreSQL primary-standby failback tools : pg_rewind》
《PostgreSQL 9.5 new feature - pg_rewind fast sync Split Brain Primary & Standby》
《PostgreSQL 9.5 add pg_rewind for Fast align for PostgreSQL unaligned primary & standby》
首先确保新主库已启动正常。
psql -h 127.0.0.1 -p 1923
psql (10.3)
Type "help" for help.
postgres=# \x
Expanded display is on.
postgres=# select pg_size_pretty(pg_wal_lsn_diff(pg_current_wal_flush_lsn(),write_lsn)) delay_wal_size,* from pg_stat_replication ;
(0 rows)
使用pg_rewind修复老主库
pg_rewind -D /data01/pg/pg_root1922 --source-server='host=127.0.0.1 port=1923 user=postgres password=pwd'
7、配置老主库变从库,将新主库作为它的主库
cd /data01/pg/pg_root1922
mv recovery.done recovery.conf
vi recovery.conf
primary_conninfo = 'host=127.0.0.1 port=1923 user=rep password=REpliCa12343231_-1!'
pg_ctl stop -m fast -D /data01/pg/pg_root1922
pg_ctl start -D /data01/pg/pg_root1922
8、如果无法使用pg_rewind修复老的主库,那么需要重建它。
rm -rf /data01/pg/pg_root1922
rm -rf /data02/pg/pg_wal_1922
pg_basebackup -D /data01/pg/pg_root1922 -F p --waldir=/data02/pg/pg_wal_1922 -h 127.0.0.1 -p 1923 -U rep
could not identify current directory: No such file or directory
Password: 输入rep用户的密码
WARNING: skipping special file "./.s.PGSQL.1923"
拷贝中
cd /data01/pg/pg_root1922
mv recovery.done recovery.conf
vi recovery.conf
primary_conninfo = 'host=127.0.0.1 port=1923 user=rep password=REpliCa12343231_-1!'
vi postgresql.conf
port=1922
pg_ctl start -D /data01/pg/pg_root1922
13 新增从库
新增一个从库,假设我这里使用端口为1924作为新的一个从库。
1、修改主库的pg_hba.conf,允许新增从库的主机访问它
vi /data01/pg/pg_root1923/pg_hba.conf
追加到配置文件末尾
# 多主机应该这样配置, 如果你在可信任网络中,也可以配置为truse代替md5,那么就不需要密码认证了
# host replication rep 主机1IP/32 md5
# host replication rep 主机2IP/32 md5
# host replication rep 主机3IP/32 md5
# host replication rep 主机4IP/32 md5
生效配置
pg_ctl reload /data01/pg/pg_root1923
2、(假设PostgreSQL软件、目录都已部署好)
注意操作系统启动PostgreSQL的用户为普通用户,你的pgdata, pg_wal目录必须为空目录,并且有写权限。或者你可以不建目录,但是OS的这个用户需要有目标父目录的写权限。
pg_basebackup -D /data01/pg/pg_root1924 -F p --waldir=/data02/pg/pg_wal_1924 -h 127.0.0.1 -p 1923 -U rep
could not identify current directory: No such file or directory
Password: 输入rep用户的密码
WARNING: skipping special file "./.s.PGSQL.1923"
拷贝中
cd /data01/pg/pg_root1924
mv recovery.done recovery.conf
vi recovery.conf
primary_conninfo = 'host=127.0.0.1 port=1923 user=rep password=REpliCa12343231_-1!'
vi postgresql.conf
port=1924
pg_ctl start -D /data01/pg/pg_root1924
在主库上查看,可以看到已经有3个备库了。
postgres=# select pg_size_pretty(pg_wal_lsn_diff(pg_current_wal_flush_lsn(),write_lsn)) delay_wal_size,* from pg_stat_replication ;
-[ RECORD 1 ]----+------------------------------
delay_wal_size | 0 bytes
pid | 15463
usesysid | 206200
usename | rep
application_name | walreceiver
client_addr | 127.0.0.1
client_hostname |
client_port | 45880
backend_start | 2018-03-26 18:56:50.825897+08
backend_xmin |
state | streaming
sent_lsn | 5B/16000060
write_lsn | 5B/16000060
flush_lsn | 5B/16000060
replay_lsn | 5B/16000060
write_lag |
flush_lag |
replay_lag |
sync_priority | 1
sync_state | quorum
-[ RECORD 2 ]----+------------------------------
delay_wal_size | 0 bytes
pid | 15437
usesysid | 206200
usename | rep
application_name | walreceiver
client_addr | 127.0.0.1
client_hostname |
client_port | 45872
backend_start | 2018-03-26 18:52:41.027181+08
backend_xmin |
state | streaming
sent_lsn | 5B/16000060
write_lsn | 5B/16000060
flush_lsn | 5B/16000060
replay_lsn | 5B/16000060
write_lag |
flush_lag |
replay_lag |
sync_priority | 1
sync_state | quorum
-[ RECORD 3 ]----+------------------------------
delay_wal_size | 0 bytes
pid | 15270
usesysid | 206200
usename | rep
application_name | walreceiver
client_addr | 127.0.0.1
client_hostname |
client_port | 45840
backend_start | 2018-03-26 18:00:24.558369+08
backend_xmin |
state | streaming
sent_lsn | 5B/16000060
write_lsn | 5B/16000060
flush_lsn | 5B/16000060
replay_lsn | 5B/16000060
write_lag |
flush_lag |
replay_lag |
sync_priority | 1
sync_state | quorum
14 重搭从库
参考 12章的第8个步骤。
15 新增级联从库
以现在的从库为上游节点,建立级联的从库
比如以从库1 (1921这个) 为上游,构建它的级联从库。
1、修改作为上游节点的从库的pg_hba.conf,允许新增级联从库的主机访问它
vi /data01/pg/pg_root1921/pg_hba.conf
追加到配置文件末尾
# 多主机应该这样配置, 如果你在可信任网络中,也可以配置为truse代替md5,那么就不需要密码认证了
# host replication rep 主机5IP/32 md5
生效配置
pg_ctl reload /data01/pg/pg_root1921
2、新建从库(假设PostgreSQL软件、目录都已部署好)
pg_basebackup -D /data01/pg/pg_root1925 -F p --waldir=/data02/pg/pg_wal_1925 -h 127.0.0.1 -p 1921 -U rep
could not identify current directory: No such file or directory
Password: 输入rep用户的密码
WARNING: skipping special file "./.s.PGSQL.1921"
拷贝中
cd /data01/pg/pg_root1925
vi recovery.conf
primary_conninfo = 'host=127.0.0.1 port=1921 user=rep password=REpliCa12343231_-1!'
# 这里连接的是上游的从库,不是主库哦,注意。
vi postgresql.conf
port=1925
pg_ctl start -D /data01/pg/pg_root1925
在上游从库上查看,可以看到已经有1个级联从库了。
psql -h 127.0.0.1 -p 1921 -U postgres postgres
postgres=# select pg_size_pretty(pg_wal_lsn_diff(pg_last_wal_receive_lsn(),write_lsn)) delay_wal_size,* from pg_stat_replication ;
-[ RECORD 1 ]----+-----------------------------
delay_wal_size | 0 bytes
pid | 15513
usesysid | 206200
usename | rep
application_name | walreceiver
client_addr | 127.0.0.1
client_hostname |
client_port | 51988
backend_start | 2018-03-26 19:04:20.89889+08
backend_xmin |
state | streaming
sent_lsn | 5B/16000060
write_lsn | 5B/16000060
flush_lsn | 5B/16000060
replay_lsn | 5B/16000060
write_lag |
flush_lag |
replay_lag |
sync_priority | 0
sync_state | async
3个直接从库,一个级联从库。总共4个从库。现在压测很有喜感,但是写入依旧有80万行/s左右。
pgbench -M prepared -n -r -P 1 -f ./test.sql -h 127.0.0.1 -p 1923 -U postgres postgres -c 56 -j 56 -T 1200000
progress: 74.0 s, 84.0 tps, lat 820.490 ms stddev 81.186
progress: 75.0 s, 28.0 tps, lat 1006.275 ms stddev 63.322
progress: 76.0 s, 64.0 tps, lat 965.826 ms stddev 212.833
progress: 77.0 s, 83.0 tps, lat 903.694 ms stddev 146.248
progress: 78.0 s, 56.0 tps, lat 803.509 ms stddev 98.570
progress: 79.0 s, 63.0 tps, lat 937.920 ms stddev 129.824
progress: 80.0 s, 93.0 tps, lat 825.556 ms stddev 183.147
iotop
Total DISK READ : 4.31 M/s | Total DISK WRITE : 1109.59 M/s
Actual DISK READ: 4.31 M/s | Actual DISK WRITE: 1110.52 M/s
TID PRIO USER DISK READ DISK WRITE SWAPIN IO> COMMAND
15436 be/4 postgres 0.00 B/s 153.79 M/s 0.00 % 62.86 % postgres: wal receiver process streaming 5C/60000000
15462 be/4 postgres 3.84 K/s 169.17 M/s 0.00 % 60.02 % postgres: wal receiver process streaming 5C/60000000
15269 be/4 postgres 7.69 K/s 169.17 M/s 0.00 % 57.47 % postgres: wal receiver process streaming 5C/61000000
15839 be/4 postgres 3.89 M/s 73.82 M/s 0.00 % 43.58 % postgres: autovacuum worker process postgres
15512 be/4 postgres 0.00 B/s 107.65 M/s 0.00 % 41.94 % postgres: wal receiver process streaming 5C/5E000000
941 be/3 root 0.00 B/s 376.79 K/s 0.00 % 33.17 % [jbd2/vdc1-8]
15498 be/4 root 0.00 B/s 0.00 B/s 0.00 % 28.72 % [kworker/u112:1]
15567 be/4 postgres 0.00 B/s 19.97 M/s 0.00 % 15.37 % postgres: postgres postgres 127.0.0.1(45910) SELECT
15432 be/4 postgres 73.05 K/s 74.87 M/s 0.00 % 14.88 % postgres: startup process recovering 000000020000005C0000005B
15458 be/4 postgres 19.22 K/s 83.71 M/s 0.00 % 9.03 % postgres: startup process recovering 000000020000005C00000058
15645 be/4 postgres 0.00 B/s 30.42 M/s 0.00 % 7.32 % postgres: postgres postgres 127.0.0.1(46004) SELECT
15622 be/4 postgres 11.53 K/s 1907.00 K/s 0.00 % 6.81 % postgres: postgres postgres 127.0.0.1(45958) SELECT
15639 be/4 postgres 3.84 K/s 18.34 M/s 0.00 % 6.70 % postgres: postgres postgres 127.0.0.1(45992) SELECT
15631 be/4 postgres 3.84 K/s 10.09 M/s 0.00 % 6.47 % postgres: postgres postgres 127.0.0.1(45976) SELECT
15577 be/4 postgres 7.69 K/s 1907.00 K/s 0.00 % 5.35 % postgres: postgres postgres 127.0.0.1(45920) SELECT
15642 be/4 postgres 7.69 K/s 1899.32 K/s 0.00 % 5.20 % postgres: postgres postgres 127.0.0.1(45998) SELECT
15615 be/4 postgres 7.69 K/s 1514.84 K/s 0.00 % 5.11 % postgres: postgres postgres 127.0.0.1(45946) SELECT
15207 be/4 postgres 3.84 K/s 66.49 M/s 0.00 % 4.48 % postgres: startup process recovering 000000020000005C00000060
15634 be/4 postgres 3.84 K/s 1891.63 K/s 0.00 % 1.39 % postgres: postgres postgres 127.0.0.1(45982) SELECT
15632 be/4 postgres 0.00 B/s 13.79 M/s 0.00 % 1.38 % postgres: postgres postgres 127.0.0.1(45978) SELECT waiting for 5C/61E789D8
15629 be/4 postgres 3.84 K/s 945.81 K/s 0.00 % 0.82 % postgres: postgres postgres 127.0.0.1(45972) SELECT
16 特殊场景隔离性说明
在多副本模式下,客户端提交事务,收到COMMIT成功消息之前,其他会话能查到本地已提交的数据吗?
答案是,当然不可以(保证事务隔离性),在客户端收到COMMIT成功消息之前,其他会话是看不到这个会话在本地已提交的数据的。(即本地已提交,backend process在等待sync wal sender等待多个副本的反馈的接收WAL位点超过提交COMMIT WAL RECORD OFFSET的状态)
同时,对于本地已提交状态明确的(客户端收到COMMIT或CACNEL状态),其他会话就能看到这个事务本地提交的数据了。
1、会话A
postgres=# create table tt(id int);
CREATE TABLE
postgres=# insert into tt values (1);
INSERT 0 1
postgres=# insert into tt values (2);
^CCancel request sent
WARNING: canceling wait for synchronous replication due to user request
DETAIL: The transaction has already committed locally, but might not have been replicated to the standby.
INSERT 0 1
postgres=# insert into tt values (3);
^CCancel request sent
WARNING: canceling wait for synchronous replication due to user request
DETAIL: The transaction has already committed locally, but might not have been replicated to the standby.
INSERT 0 1
postgres=# \set VERBOSITY verbose
postgres=# insert into tt values (3);
^CCancel request sent
WARNING: 01000: canceling wait for synchronous replication due to user request
DETAIL: The transaction has already committed locally, but might not have been replicated to the standby.
LOCATION: SyncRepWaitForLSN, syncrep.c:266
INSERT 0 1
postgres=# begin;
BEGIN
postgres=# insert into tt values (4);
INSERT 0 1
postgres=# end;
^CCancel request sent
WARNING: 01000: canceling wait for synchronous replication due to user request
DETAIL: The transaction has already committed locally, but might not have been replicated to the standby.
LOCATION: SyncRepWaitForLSN, syncrep.c:266
COMMIT
postgres=# select pg_backend_pid;
ERROR: 42703: column "pg_backend_pid" does not exist
LINE 1: select pg_backend_pid;
^
LOCATION: errorMissingColumn, parse_relation.c:3293
postgres=# select pg_backend_pid();
pg_backend_pid
----------------
43467
(1 row)
postgres=# insert into tt values (100);
WARNING: 57P01: canceling the wait for synchronous replication and terminating connection due to administrator command
DETAIL: The transaction has already committed locally, but might not have been replicated to the standby.
LOCATION: SyncRepWaitForLSN, syncrep.c:249
server closed the connection unexpectedly
This probably means the server terminated abnormally
before or while processing the request.
The connection to the server was lost. Attempting reset: Succeeded.
postgres=# select pg_backend_pid();
pg_backend_pid
----------------
43781
(1 row)
postgres=# insert into tt values (101);
WARNING: 01000: canceling wait for synchronous replication due to user request
DETAIL: The transaction has already committed locally, but might not have been replicated to the standby.
LOCATION: SyncRepWaitForLSN, syncrep.c:266
INSERT 0 1
2、会话B
postgres=# select * from txid_current_snapshot();
txid_current_snapshot
------------------------
2482094559:2482094559:
(1 row)
postgres=# select pg_terminate_backend(43467);
pg_terminate_backend
----------------------
t
(1 row)
postgres=# select * from tt;
id
-----
1
2
3
3
4
100
(6 rows)
postgres=# select pg_cancel_backend(43781);
pg_cancel_backend
-------------------
t
(1 row)
postgres=# select * from tt;
id
-----
1
2
3
3
4
100
101
(7 rows)
17 同步模式 VS 异步模式 性能对比
1、生成1亿TPC-B测试数据
pgbench -i -s 1000
2、多副本同步模式
postgres=# show synchronous_commit ;
synchronous_commit
--------------------
remote_write
(1 row)
postgres=# show synchronous_standby_names ;
synchronous_standby_names
---------------------------
ANY 1 (*)
(1 row)
3、压测
pgbench -M prepared -n -r -P 1 -c 56 -j 56 -T 120
transaction type: <builtin: TPC-B (sort of)>
scaling factor: 1000
query mode: prepared
number of clients: 56
number of threads: 56
duration: 120 s
number of transactions actually processed: 5381146
latency average = 1.248 ms
latency stddev = 4.118 ms
tps = 44840.272218 (including connections establishing)
tps = 44853.145859 (excluding connections establishing)
script statistics:
- statement latencies in milliseconds:
0.002 \set aid random(1, 100000 * :scale)
0.001 \set bid random(1, 1 * :scale)
0.001 \set tid random(1, 10 * :scale)
0.001 \set delta random(-5000, 5000)
0.063 BEGIN;
0.171 UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE aid = :aid;
0.096 SELECT abalance FROM pgbench_accounts WHERE aid = :aid;
0.109 UPDATE pgbench_tellers SET tbalance = tbalance + :delta WHERE tid = :tid;
0.118 UPDATE pgbench_branches SET bbalance = bbalance + :delta WHERE bid = :bid;
0.090 INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES (:tid, :bid, :aid, :delta, CURRENT_TIMESTAMP);
0.597 END;
4、本地持久化,单副本模式
postgres@-> psql
psql (10.3)
Type "help" for help.
postgres=# alter role postgres set synchronous_commit = local;
ALTER ROLE
postgres=# \q
postgres@-> psql
psql (10.3)
Type "help" for help.
postgres=# show synchronous_commit ;
synchronous_commit
--------------------
local
(1 row)
5、压测
pgbench -M prepared -n -r -P 1 -c 56 -j 56 -T 120
transaction type: <builtin: TPC-B (sort of)>
scaling factor: 1000
query mode: prepared
number of clients: 56
number of threads: 56
duration: 120 s
number of transactions actually processed: 6684833
latency average = 1.005 ms
latency stddev = 1.494 ms
tps = 55695.800213 (including connections establishing)
tps = 55700.524316 (excluding connections establishing)
script statistics:
- statement latencies in milliseconds:
0.002 \set aid random(1, 100000 * :scale)
0.001 \set bid random(1, 1 * :scale)
0.001 \set tid random(1, 10 * :scale)
0.001 \set delta random(-5000, 5000)
0.061 BEGIN;
0.133 UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE aid = :aid;
0.096 SELECT abalance FROM pgbench_accounts WHERE aid = :aid;
0.108 UPDATE pgbench_tellers SET tbalance = tbalance + :delta WHERE tid = :tid;
0.114 UPDATE pgbench_branches SET bbalance = bbalance + :delta WHERE bid = :bid;
0.091 INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES (:tid, :bid, :aid, :delta, CURRENT_TIMESTAMP);
0.400 END;
OLTP写场景本地持久化 VS 多副本性能对比:
1、多副本模式,RT 提高了0.24毫秒,约20%
2、多副本模式,TPS 下降了10855,约20%
小结
PostgreSQL的多副本复制非常的简单并且健壮。
流复制有几个特点
1、延迟及低,毫不畏惧大事务
2、支持断点续传
3、支持多副本
4、配置简单,看本文
5、备库与主库物理完全一致,并支持只读
6、支持多级级联从库
许多用户会使用流复制来搭建只读备库,容灾,备份节点,HA等。
本文主要介绍了PostgreSQL一主多从的配置,以及多副本强同步的配置。
如果想使用多副本实现“0数据丢失、高可用”方案,可以先实现内核层冻结receiver进程,这样可以更加容易的实现新主的选举。(否则需要使用pg_waldump来观察位点是谁的最新)。然后就可以愉快的切换到最新位点的从库,确保切换的0丢失。
同时为了保证不出现脑裂,需要控制住了大于或等于(一会PG中参数指定“同步备库数 - 同步副本数 + 1”)个节点,再选择新的主节点(选出它们中WAL位点最新的作为新主节点),则绝对不可能出现脑裂的问题,也不会丢失数据。
至于使用智能DNS还是PROXY,又或者是VIP来实现业务端透明,根据你的数据库所在的环境来决定,哪个方便用哪个。VIP或者DNS的话性能应该是最好的,因为应用程序到达数据库的跳数最少。
参考
你可能还对如下文档感兴趣
《PostgreSQL 10 on ECS 实施 流复制备库镜像+自动快照备份+自动备份验证+自动清理备份与归档》
(它也可以代替pg_rewind来修复时间线问题,对于特别庞大的数据库非常有效。)
《PostgreSQL 10 + PostGIS + Sharding(pg_pathman) + MySQL(fdw外部表) on ECS 部署指南(适合新用户)》
《PostgreSQL - 鱼与熊掌可兼得 - 多副本0丢失与高性能兼得 - 事务级异步、同步开关》
《PG多节点(quorum based), 0丢失 HA(failover,switchover)方案》
《PostgreSQL 同步流复制(高并发写入)锁瓶颈分析》
《PostgreSQL 9.6 同步多副本 与 remote_apply事务同步级别》
《PostgreSQL 小改动,解决流复制遇到的pg_xlog已删除的问题(主库wal sender读归档目录文件发送给wal sender)》