ConcurrentHashMap一篇治愈你的迷茫

时间:2021-05-20 16:47:05

都说concurrentHashmap很重要,很好用,今天总结一下,做个笔记。

先捋一下concurrentHashMap的属性

    /** * 这个表的默认初始容量, * 在构造函数中没有指定的时候使用。 */
    static final int DEFAULT_INITIAL_CAPACITY = 16;

    /** * 这个表的默认加载因子,不用时使用 * 否则在构造函数中指定。 */
    static final float DEFAULT_LOAD_FACTOR = 0.75f;

    /** * 这个表的默认并发级别,在不使用时使用 * 在构造函数中指定的 */
    static final int DEFAULT_CONCURRENCY_LEVEL = 16;

    /** * 最大容量,如果更高的值隐式使用 * 由具有参数的构造函数指定。 必须 * 是两个<= 1 << 30的幂以确保条目是可索引的 * 使用整数。 */
    static final int MAXIMUM_CAPACITY = 1 << 30;

    /** * 每个细分表格的最小容量。 必须是 * 两个,至少两个,以避免立即调整下次使用 */
    static final int MIN_SEGMENT_TABLE_CAPACITY = 2;

    /** * 允许的最大段数; 用来绑定 * 构造函数参数。。 */
    static final int MAX_SEGMENTS = 1 << 16; // slightly conservative

    /** * 包含大小和包含值的未同步重试次数 * 在诉诸锁定之前的方法。 这是用来避免 * 如果表格经历了不断的修改,那么无限制的重试 * 这将无法获得准确的结果。 */
    static final int RETRIES_BEFORE_LOCK = 2;

一、先看一下concurrentHashMap的数据结构

看下面,重点是那个Segment[] segments 数组

final int segmentMask;

    /** * Shift value for indexing within segments. */
    final int segmentShift;

    /** * The segments, each of which is a specialized hash table. */
    final Segment<K,V>[] segments;

    transient Set<K> keySet;
    transient Set<Map.Entry<K,V>> entrySet;
    transient Collection<V> values;

Segment 的结构,有个HashEntry 数组,并且继承了ReentrantLock ,到这里相信你已经明白了,每个segment都是一个锁,因此concurrentHashMap 的分段锁所得就是这个segment。

static final class Segment<K,V> extends ReentrantLock implements Serializable {
    static final int MAX_SCAN_RETRIES =
            Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;

        /** * The per-segment table. Elements are accessed via * entryAt/setEntryAt providing volatile semantics. */
        transient volatile HashEntry<K,V>[] table;

        /** * The number of elements. Accessed only either within locks * or among other volatile reads that maintain visibility. */
        transient int count;
        }

HashEntry 结构有next的引用 是个链表结构

static final class HashEntry<K,V> {
        final int hash;
        final K key;
        volatile V value;
        volatile HashEntry<K,V> next;

        HashEntry(int hash, K key, V value, HashEntry<K,V> next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }

列出上面源码,就清楚可以看出concurrenthashMap 的数据结构了。
ConcurrentHashMap一篇治愈你的迷茫

图片画的有点糙,能看出道理就可以了。

concurrenthashMap是一个segment的数组,segment包含一个hashEntry的数组,hashentry是一个链表。

二、来一起走一遍源码

    1、初始化
public ConcurrentHashMap(int initialCapacity,
                             float loadFactor, int concurrencyLevel) {
         //判断加载因子、初始化容量、并发级别参数是否合法
        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
            throw new IllegalArgumentException();
          //并发级别超过最大值,就设置为最大值
        if (concurrencyLevel > MAX_SEGMENTS)
            concurrencyLevel = MAX_SEGMENTS;
        // Find power-of-two sizes best matching arguments
        //偏移量,定位的时候用
        int sshift = 0;
        //segment的个数,只能是2的幂次方
        int ssize = 1;
        while (ssize < concurrencyLevel) {
            ++sshift;
            ssize <<= 1;
        }
        this.segmentShift = 32 - sshift;
        this.segmentMask = ssize - 1;
        //初始化大小不能大于最大值
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        //下面是计算容量--------------------------
        //平均一个segment有所少容量
        int c = initialCapacity / ssize;
        //必须是2的幂次方
        if (c * ssize < initialCapacity)
            ++c;
        //真正的计算容量,2的幂次方
        int cap = MIN_SEGMENT_TABLE_CAPACITY;
        while (cap < c)
            cap <<= 1;
        // create segments and segments[0]
        Segment<K,V> s0 =
            new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
                             (HashEntry<K,V>[])new HashEntry[cap]);
        Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];
        UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
        this.segments = ss;
    }

2、get方法,没有加锁,老的版本还在查到是null的时候,会在加锁的情况下载查一遍。

 public V get(Object key) {
        Segment<K,V> s; // manually integrate access methods to reduce overhead
        HashEntry<K,V>[] tab;
        int h = hash(key);
        long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
        if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
            (tab = s.table) != null) {
            for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
                     (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
                 e != null; e = e.next) {
                K k;
                if ((k = e.key) == key || (e.hash == h && key.equals(k)))
                    return e.value;
            }
        }
        return null;
    }

3、put方法,首先是定位到那个segment,然后调用segment的put方法

public V put(K key, V value) {
        Segment<K,V> s;
        if (value == null)
            throw new NullPointerException();
        int hash = hash(key);
        int j = (hash >>> segmentShift) & segmentMask;
        if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck
             (segments, (j << SSHIFT) + SBASE)) == null) // in ensureSegment
            s = ensureSegment(j);
        return s.put(key, hash, value, false);
    }

这个就是segment的put方法,分段锁就是在这里。put先判断key是否存在,存在覆盖,不存在,放在链表投。

final V put(K key, int hash, V value, boolean onlyIfAbsent) {
            HashEntry<K,V> node = tryLock() ? null :
                scanAndLockForPut(key, hash, value);
            V oldValue;
            try {
                HashEntry<K,V>[] tab = table;
                int index = (tab.length - 1) & hash;
                HashEntry<K,V> first = entryAt(tab, index);
                for (HashEntry<K,V> e = first;;) {
                    if (e != null) {
                        K k;
                        if ((k = e.key) == key ||
                            (e.hash == hash && key.equals(k))) {
                            oldValue = e.value;
                            if (!onlyIfAbsent) {
                                e.value = value;
                                ++modCount;
                            }
                            break;
                        }
                        e = e.next;
                    }
                    else {
                        if (node != null)
                            node.setNext(first);
                        else
                            node = new HashEntry<K,V>(hash, key, value, first);
                        int c = count + 1;
                        if (c > threshold && tab.length < MAXIMUM_CAPACITY)
                            rehash(node);
                        else
                            setEntryAt(tab, index, node);
                        ++modCount;
                        count = c;
                        oldValue = null;
                        break;
                    }
                }
            } finally {
                unlock();
            }
            return oldValue;
        }

4、remove方法的套路和put是一样的,先定位,然后调用segment的remove。

public V remove(Object key) {
        int hash = hash(key);
        Segment<K,V> s = segmentForHash(hash);
        return s == null ? null : s.remove(key, hash, null);
    }

这里是segment的remove

 final V remove(Object key, int hash, Object value) {
            if (!tryLock())
                scanAndLock(key, hash);
            V oldValue = null;
            try {
                HashEntry<K,V>[] tab = table;
                int index = (tab.length - 1) & hash;
                HashEntry<K,V> e = entryAt(tab, index);
                HashEntry<K,V> pred = null;
                while (e != null) {
                    K k;
                    HashEntry<K,V> next = e.next;
                    if ((k = e.key) == key ||
                        (e.hash == hash && key.equals(k))) {
                        V v = e.value;
                        if (value == null || value == v || value.equals(v)) {
                            if (pred == null)
                                setEntryAt(tab, index, next);
                            else
                                pred.setNext(next);
                            ++modCount;
                            --count;
                            oldValue = v;
                        }
                        break;
                    }
                    pred = e;
                    e = next;
                }
            } finally {
                unlock();
            }
            return oldValue;
        }