转:Python获取随机数(英文)

时间:2023-02-14 21:37:55

Random — Generate pseudo-random numbers

Source code: Lib/random.py


This module implements pseudo-random number generators for various distributions.

For integers, uniform selection from a range. For sequences, uniform selection of a random element, a function to generate a random permutation of a list in-place, and a function for random sampling without replacement.

On the real line, there are functions to compute uniform, normal (Gaussian), lognormal, negative exponential, gamma, and beta distributions. For generating distributions of angles, the von Mises distribution is available.

Almost all module functions depend on the basic function random(), which generates a random float uniformly in the semi-open range [0.0, 1.0). Python uses the Mersenne Twister as the core generator. It produces 53-bit precision floats and has a period of 2**19937-1. The underlying implementation in C is both fast and threadsafe. The Mersenne Twister is one of the most extensively tested random number generators in existence. However, being completely deterministic, it is not suitable for all purposes, and is completely unsuitable for cryptographic purposes.

The functions supplied by this module are actually bound methods of a hidden instance of the random.Random class. You can instantiate your own instances of Random to get generators that don’t share state. This is especially useful for multi-threaded programs, creating a different instance of Random for each thread, and using the jumpahead() method to make it likely that the generated sequences seen by each thread don’t overlap.

Class Random can also be subclassed if you want to use a different basic generator of your own devising: in that case, override the random()seed()getstate()setstate() and jumpahead() methods. Optionally, a new generator can supply a getrandbits() method — this allows randrange() to produce selections over an arbitrarily large range.

New in version 2.4: the getrandbits() method.

As an example of subclassing, the random module provides the WichmannHill class that implements an alternative generator in pure Python. The class provides a backward compatible way to reproduce results from earlier versions of Python, which used the Wichmann-Hill algorithm as the core generator. Note that this Wichmann-Hill generator can no longer be recommended: its period is too short by contemporary standards, and the sequence generated is known to fail some stringent randomness tests. See the references below for a recent variant that repairs these flaws.

Changed in version 2.3: MersenneTwister replaced Wichmann-Hill as the default generator.

The random module also provides the SystemRandom class which uses the system function os.urandom() to generate random numbers from sources provided by the operating system.

Warning

The pseudo-random generators of this module should not be used for security purposes. Use os.urandom() or SystemRandom if you require a cryptographically secure pseudo-random number generator.

Bookkeeping functions:

random.seed([x])

Initialize the basic random number generator. Optional argument x can be any hashable object. If x is omitted or None, current system time is used; current system time is also used to initialize the generator when the module is first imported. If randomness sources are provided by the operating system, they are used instead of the system time (see the os.urandom() function for details on availability).

Changed in version 2.4: formerly, operating system resources were not used.

random.getstate()

Return an object capturing the current internal state of the generator. This object can be passed to setstate() to restore the state.

New in version 2.1.

Changed in version 2.6: State values produced in Python 2.6 cannot be loaded into earlier versions.

random.setstate(state)

state should have been obtained from a previous call to getstate(), and setstate() restores the internal state of the generator to what it was at the time getstate() was called.

New in version 2.1.

random.jumpahead(n)

Change the internal state to one different from and likely far away from the current state. n is a non-negative integer which is used to scramble the current state vector. This is most useful in multi-threaded programs, in conjunction with multiple instances of the Random class: setstate() or seed() can be used to force all instances into the same internal state, and then jumpahead() can be used to force the instances’ states far apart.

New in version 2.1.

Changed in version 2.3: Instead of jumping to a specific state, n steps ahead, jumpahead(n) jumps to another state likely to be separated by many steps.

random.getrandbits(k)

Returns a python long int with k random bits. This method is supplied with the MersenneTwister generator and some other generators may also provide it as an optional part of the API. When available,getrandbits() enables randrange() to handle arbitrarily large ranges.

New in version 2.4.

Functions for integers:

random.randrange(stop)
random.randrange(startstop[, step])

Return a randomly selected element from range(start, stop, step). This is equivalent to choice(range(start, stop, step)), but doesn’t actually build a range object.

New in version 1.5.2.

random.randint(ab)

Return a random integer N such that a <= N <= b.

Functions for sequences:

random.choice(seq)

Return a random element from the non-empty sequence seq. If seq is empty, raises IndexError.

random.shuffle(x[, random])

Shuffle the sequence x in place. The optional argument random is a 0-argument function returning a random float in [0.0, 1.0); by default, this is the function random().

Note that for even rather small len(x), the total number of permutations of x is larger than the period of most random number generators; this implies that most permutations of a long sequence can never be generated.

random.sample(populationk)

Return a k length list of unique elements chosen from the population sequence. Used for random sampling without replacement.

New in version 2.3.

Returns a new list containing elements from the population while leaving the original population unchanged. The resulting list is in selection order so that all sub-slices will also be valid random samples. This allows raffle winners (the sample) to be partitioned into grand prize and second place winners (the subslices).

Members of the population need not be hashable or unique. If the population contains repeats, then each occurrence is a possible selection in the sample.

To choose a sample from a range of integers, use an xrange() object as an argument. This is especially fast and space efficient for sampling from a large population: sample(xrange(10000000), 60).

The following functions generate specific real-valued distributions. Function parameters are named after the corresponding variables in the distribution’s equation, as used in common mathematical practice; most of these equations can be found in any statistics text.

random.random()

Return the next random floating point number in the range [0.0, 1.0).

random.uniform(ab)

Return a random floating point number N such that a <= N <= b for a <= b and b <= N <= a for b < a.

The end-point value b may or may not be included in the range depending on floating-point rounding in the equation a + (b-a) * random().

random.triangular(lowhighmode)

Return a random floating point number N such that low <= N <= high and with the specified mode between those bounds. The low and high bounds default to zero and one. The mode argument defaults to the midpoint between the bounds, giving a symmetric distribution.

New in version 2.6.

random.betavariate(alphabeta)

Beta distribution. Conditions on the parameters are alpha > 0 and beta > 0. Returned values range between 0 and 1.

random.expovariate(lambd)

Exponential distribution. lambd is 1.0 divided by the desired mean. It should be nonzero. (The parameter would be called “lambda”, but that is a reserved word in Python.) Returned values range from 0 to positive infinity if lambd is positive, and from negative infinity to 0 if lambd is negative.

random.gammavariate(alphabeta)

Gamma distribution. (Not the gamma function!) Conditions on the parameters are alpha > 0 and beta > 0.

The probability distribution function is:

x ** (alpha - 1) * math.exp(-x / beta)pdf(x) = -------------------------------------- math.gamma(alpha) * beta ** alpha
random.gauss(musigma)

Gaussian distribution. mu is the mean, and sigma is the standard deviation. This is slightly faster than the normalvariate() function defined below.

random.lognormvariate(musigma)

Log normal distribution. If you take the natural logarithm of this distribution, you’ll get a normal distribution with mean mu and standard deviation sigmamu can have any value, and sigma must be greater than zero.

random.normalvariate(musigma)

Normal distribution. mu is the mean, and sigma is the standard deviation.

random.vonmisesvariate(mukappa)

mu is the mean angle, expressed in radians between 0 and 2*pi, and kappa is the concentration parameter, which must be greater than or equal to zero. If kappa is equal to zero, this distribution reduces to a uniform random angle over the range 0 to 2*pi.

random.paretovariate(alpha)

Pareto distribution. alpha is the shape parameter.

random.weibullvariate(alphabeta)

Weibull distribution. alpha is the scale parameter and beta is the shape parameter.

Alternative Generators:

class random.WichmannHill([seed])

Class that implements the Wichmann-Hill algorithm as the core generator. Has all of the same methods as Random plus the whseed() method described below. Because this class is implemented in pure Python, it is not threadsafe and may require locks between calls. The period of the generator is 6,953,607,871,644 which is small enough to require care that two independent random sequences do not overlap.

random.whseed([x])

This is obsolete, supplied for bit-level compatibility with versions of Python prior to 2.1. See seed() for details. whseed() does not guarantee that distinct integer arguments yield distinct internal states, and can yield no more than about 2**24 distinct internal states in all.

class random.SystemRandom([seed])

Class that uses the os.urandom() function for generating random numbers from sources provided by the operating system. Not available on all systems. Does not rely on software state and sequences are not reproducible. Accordingly, the seed() and jumpahead() methods have no effect and are ignored. The getstate() and setstate() methods raise NotImplementedError if called.

New in version 2.4.

Examples of basic usage:

>>>>>> random.random() # Random float x, 0.0 <= x < 1.0
0.37444887175646646
>>> random.uniform(1, 10) # Random float x, 1.0 <= x < 10.0
1.1800146073117523
>>> random.randint(1, 10) # Integer from 1 to 10, endpoints included
7
>>> random.randrange(0, 101, 2) # Even integer from 0 to 100
26
>>> random.choice('abcdefghij') # Choose a random element
'c'
>>> items = [1, 2, 3, 4, 5, 6, 7]
>>> random.shuffle(items)
>>> items[7, 3, 2, 5, 6, 4, 1]
>>> random.sample([1, 2, 3, 4, 5], 3) # Choose 3 elements
[4, 1, 5]

See also

M. Matsumoto and T. Nishimura, “Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom number generator”, ACM Transactions on Modeling and Computer Simulation Vol. 8, No. 1, January pp.3-30 1998.

Wichmann, B. A. & Hill, I. D., “Algorithm AS 183: An efficient and portable pseudo-random number generator”, Applied Statistics 31 (1982) 188-190.

Complementary-Multiply-with-Carry recipe for a compatible alternative random number generator with a long period and comparatively simple update operations.

转:Python获取随机数(英文)的更多相关文章

  1. Python获取随机数

    Python当中,可用random模块来获取随机数 import random """ random模块,用于获取随机数 """ print ...

  2. 转:Python获取随机数(中文)

    下面介绍下random中常见的函数. 前提:需要导入random模块 >>>import random 1.random.random random.random() 用于生成一个0 ...

  3. Python Random随机数

    Python产生随机数的功能在random模块中实现.实现了各种分布的伪随机数生成器 该模块能够生成0到1的浮点随机数,也能够在一个序列中进行随机选择.产生的随机数能够是均匀分布.高斯分布,对数正态分 ...

  4. Pythonrandom模块(获取随机数)常用方法和使用例子

    Python random模块(获取随机数)常用方法和使用例子 这篇文章主要介绍了Python random模块(获取随机数)常用方法和使用例子,需要的朋友可以参考下 random.random ra ...

  5. Python获取当前时间&lowbar;获取格式化时间&lowbar;格式化日期

    Python获取当前时间_获取格式化时间: Python获取当前时间: 使用 time.time( ) 获取到距离1970年1月1日的秒数(浮点数),然后传递给 localtime 获取当前时间 #使 ...

  6. 使用shell&sol;python获取hostname&sol;fqdn释疑

    一直以来被Linux的hostname和fqdn(Fully Qualified Domain Name)困惑了好久,今天专门抽时间把它们的使用细节弄清了. 一.设置hostname/fqdn 在Li ...

  7. python 获取日期

    转载   原文:python 获取日期 作者:m4774411wang python 获取日期我们需要用到time模块,比如time.strftime方法 time.strftime('%Y-%m-% ...

  8. python获取字母在字母表对应位置的几种方法及性能对比较

    python获取字母在字母表对应位置的几种方法及性能对比较 某些情况下要求我们查出字母在字母表中的顺序,A = 1,B = 2 , C = 3, 以此类推,比如这道题目 https://project ...

  9. python获取文件大小

    python获取文件大小 # !/usr/bin/python3.4 # -*- coding: utf-8 -*- import os # 字节bytes转化kb\m\g def formatSiz ...

随机推荐

  1. &lbrack;转&rsqb;ArcIMS 中地图坐标参考设置(ArcGIS Unknown Spatial Reference)

    "ArcGIS Unknown Spatial Reference"问题: shp文件在Arcgis打开后经常因为原有坐标系无法识别而丢失信息,出现以下提示信息: "Un ...

  2. &lbrack; Database &rsqb; &lbrack; Sybase &rsqb; &lbrack; SQLServer &rsqb; sybase 與SQL Server的界接方式

    目前我們有個專案Server A安裝了 SQL Server 2012,有個需求需要連線到另外一台Server B上的 Sybase 12.5的view, 先前試過了很多方法都無法連通.主要的原因是因 ...

  3. Swing-JPopupMenu弹出菜单用法-入门

    弹出菜单是GUI程序中非常常见的一种控件.它通常由鼠标右击事件触发,比如在windows系统桌面上右击时,会弹出一个包含“刷新”.“属性”等菜单的弹出菜单.Swing中的弹出菜单是JPopupMenu ...

  4. &lbrack;Swift&rsqb;LeetCode704&period; 二分查找 &vert; Binary Search

    Given a sorted (in ascending order) integer array nums of nelements and a target value, write a func ...

  5. Oracle 常用的十大 DDL 对象

    table:(表) 创建表 create table test3 (tid number,tname varchar2(),hiredate date default sysdate); create ...

  6. ubuntu root 密码是随机的! root权限下设置共享文件夹

    一.Ubuntu的默认root密码是随机的,即每次开机都有一个新的root密码.我们可以在终端输入命令 sudo passwd,然后输入当前用户的密码,enter, 二.终端会提示我们输入新的密码并确 ...

  7. BZOJ 3526&colon; &lbrack;Poi2014&rsqb;Card

    3526: [Poi2014]Card Time Limit: 25 Sec  Memory Limit: 64 MBSubmit: 267  Solved: 191[Submit][Status][ ...

  8. xpath是什么(入门教程)

    xpath是什么(入门教程) 一.总结 一句话总结:一句话,XPath 是一门在 XML 文档中查找信息的语言.简单来说,html类似于xml结构,但是没有xml格式那么严格. 在xml中查找信息 包 ...

  9. 在虚拟机中安装ubuntu

    初始安装: 1.安装新虚拟机时,选择稍后安装操作系统,这可以自己设置语言等信息 2.修改自定义硬件:为网卡生成一个mac地址,(这里需要注意,有时网卡会冲突,导致连接时好时坏,以后可以删除掉网卡,重新 ...

  10. 二分图 最小点覆盖 poj 3041

    题目链接:Asteroids - POJ 3041 - Virtual Judge  https://vjudge.net/problem/POJ-3041 第一行输入一个n和一个m表示在n*n的网格 ...