C++11并发之std::mutex

时间:2024-01-02 20:28:25
知识链接:
C++11并发之std::thread
 
本文概要:
1、 头文件。
2、std::mutex。
3、std::recursive_mutex。
4、std::time_mutex。
5、std::lock_guard 与 std::unique_lock。
Mutex 又称互斥量,C++ 11中与 Mutex 相关的类(包括锁类型)和函数都声明在 #include 头文件中,所以如果你需要使用 std::mutex,就必须包含 #include 头文件。

1、 头文件。

Mutex 系列类(四种)
  • std::mutex,最基本的 Mutex 类。
  • std::recursive_mutex,递归 Mutex 类。
  • std::time_mutex,定时 Mutex 类。
  • std::recursive_timed_mutex,定时递归 Mutex 类。
Lock 类(两种)
  • std::lock_guard,与 Mutex RAII 相关,方便线程对互斥量上锁。
  • std::unique_lock,与 Mutex RAII 相关,方便线程对互斥量上锁,但提供了更好的上锁和解锁控制。
其他类型
  • std::once_flag
  • std::adopt_lock_t
  • std::defer_lock_t
  • std::try_to_lock_t

函数

  • std::try_lock,尝试同时对多个互斥量上锁。
  • std::lock,可以同时对多个互斥量上锁。
  • std::call_once,如果多个线程需要同时调用某个函数,call_once 可以保证多个线程对该函数只调用一次。

2、std::mutex。

下面以 std::mutex 为例介绍 C++11 中的互斥量用法。
std::mutex 是C++11 中最基本的互斥量,std::mutex 对象提供了独占所有权的特性——即不支持递归地对 std::mutex 对象上锁,而 std::recursive_lock 则可以递归地对互斥量对象上锁。

std::mutex 的成员函数

(1)构造函数,std::mutex不允许拷贝构造,也不允许 move 拷贝,最初产生的 mutex 对象是处于 unlocked 状态的。
(2)lock(),调用线程将锁住该互斥量。线程调用该函数会发生下面 3 种情况:
     a)如果该互斥量当前没有被锁住,则调用线程将该互斥量锁住,直到调用 unlock之前,该线程一直拥有该锁。
     b)如果当前互斥量被其他线程锁住,则当前的调用线程被阻塞住。
     c)如果当前互斥量被当前调用线程锁住,则会产生死锁 (deadlock) 。
(3)unlock(),解锁,释放对互斥量的所有权。
(4)try_lock(),尝试锁住互斥量,如果互斥量被其他线程占有,则当前线程也不会被阻塞。线程调用该函数也会出现下面 3 种情况:
     a)如果当前互斥量没有被其他线程占有,则该线程锁住互斥量,直到该线程调用 unlock 释放互斥量。
     b)如果当前互斥量被其他线程锁住,则当前调用线程返回 false,而并不会被阻塞掉。
     c)如果当前互斥量被当前调用线程锁住,则会产生死锁 (deadlock) 。
std::mutex的例子如下:

  1. #include //std::cout
  2. #include //std::thread
  3. #include //std::mutex
  4. #include //std::atomic
  5. using namespace std;
  6. atomic_int counter{ 0 }; //原子变量
  7. mutex g_mtx; //互斥量
  8. void fun()
  9. {
  10. for (int i = 0; i <</span> 1000000; ++i)
  11. {
  12. if (g_mtx.try_lock()) //尝试是否可以加锁
  13. {
  14. ++counter;
  15. g_mtx.unlock(); //解锁
  16. }
  17. }
  18. }
  19. int main()
  20. {
  21. thread threads[10];
  22. for (int i = 0; i <</span> 10; ++i)
  23. {
  24. threads[i] = thread(fun);
  25. }
  26. for (auto & th : threads)
  27. {
  28. th.join();
  29. }
  30. cout << "counter=" << counter << endl;
  31. system("pause");
  32. return 0;
  33. }
  34. 运行结果:
  35. counter=1342244
从例子可知,10个线程不会产生死锁,由于 try_lock() ,尝试锁住互斥量,如果互斥量被其他线程占有,则当前线程也不会被阻塞。但是这样会导致结果不正确,这也就是线程安全的问题,前面在 C++11并发之std::thread T7 中详细介绍了这个问题。

3、std::recursive_mutex。

如果一个线程中可能在执行中需要再次获得锁的情况,按常规的做法会出现死锁。
例如:

  1. #include //std::cout
  2. #include //std::thread
  3. #include //std::mutex
  4. using namespace std;
  5. mutex g_mutex;
  6. void threadfun1()
  7. {
  8. cout << "enter threadfun1" << endl;
  9. lock_guard lock(g_mutex);
  10. cout << "execute threadfun1" << endl;
  11. }
  12. void threadfun2()
  13. {
  14. cout << "enter threadfun2" << endl;
  15. lock_guard lock(g_mutex);
  16. threadfun1();
  17. cout << "execute threadfun2" << endl;
  18. }
  19. int main()
  20. {
  21. threadfun2(); //死锁
  22. //Unhandled exception at 0x758BC42D in Project2.exe: Microsoft C++ exception: std::system_error at memory location 0x0015F140.
  23. return 0;
  24. }
  25. 运行结果:
  26. enter threadfun2
  27. enter threadfun1
  28. //就会产生死锁
此时就需要使用递归式互斥量 recursive_mutex 来避免这个问题。recursive_mutex不会产生上述的死锁问题,只是是增加锁的计数,但必须确保你unlock和lock的次数相同,其他线程才可能锁这个mutex。
例如:

  1. #include //std::cout
  2. #include //std::thread
  3. #include //std::mutex
  4. using namespace std;
  5. recursive_mutex g_rec_mutex;
  6. void threadfun1()
  7. {
  8. cout << "enter threadfun1" << endl;
  9. lock_guard lock(g_rec_mutex);
  10. cout << "execute threadfun1" << endl;
  11. }
  12. void threadfun2()
  13. {
  14. cout << "enter threadfun2" << endl;
  15. lock_guard lock(g_rec_mutex);
  16. threadfun1();
  17. cout << "execute threadfun2" << endl;
  18. }
  19. int main()
  20. {
  21. threadfun2(); //利用递归式互斥量来避免这个问题
  22. return 0;
  23. }
  24. 运行结果:
  25. enter threadfun2
  26. enter threadfun1
  27. execute threadfun1
  28. execute threadfun2
结论:
std::recursive_mutex 与 std::mutex 一样,也是一种可以被上锁的对象,但是和 std::mutex 不同的是,std::recursive_mutex 允许同一个线程对互斥量多次上锁(即递归上锁),来获得对互斥量对象的多层所有权,std::recursive_mutex 释放互斥量时需要调用与该锁层次深度相同次数的 unlock(),可理解为 lock() 次数和 unlock() 次数相同,除此之外,std::recursive_mutex 的特性和 std::mutex 大致相同。

4、std::time_mutex。

std::time_mutex 比 std::mutex 多了两个成员函数,try_lock_for(),try_lock_until()。
try_lock_for 函数接受一个时间范围,表示在这一段时间范围之内线程如果没有获得锁则被阻塞住(与 std::mutex 的 try_lock() 不同,try_lock 如果被调用时没有获得锁则直接返回 false),如果在此期间其他线程释放了锁,则该线程可以获得对互斥量的锁,如果超时(即在指定时间内还是没有获得锁),则返回 false。
例如:

  1. #include //std::cout
  2. #include //std::thread
  3. #include //std::mutex
  4. using namespace std;
  5. std::timed_mutex g_t_mtx;
  6. void fun()
  7. {
  8. while (!g_t_mtx.try_lock_for(std::chrono::milliseconds(200)))
  9. {
  10. cout << "-";
  11. }
  12. this_thread::sleep_for(std::chrono::milliseconds(1000));
  13. cout << "*" << endl;
  14. g_t_mtx.unlock();
  15. }
  16. int main()
  17. {
  18. std::thread threads[10];
  19. for (int i = 0; i <</span> 10; i++)
  20. {
  21. threads[i] = std::thread(fun);
  22. }
  23. for (auto & th : threads)
  24. {
  25. th.join();
  26. }
  27. return 0;
  28. }
  29. 运行结果:
  30. ------------------------------------*
  31. ----------------------------------------*
  32. -----------------------------------*
  33. ------------------------------*
  34. -------------------------*
  35. --------------------*
  36. ---------------*
  37. ----------*
  38. -----*
  39. *
try_lock_until 函数则接受一个时间点作为参数,在指定时间点未到来之前线程如果没有获得锁则被阻塞住,如果在此期间其他线程释放了锁,则该线程可以获得对互斥量的锁,如果超时(即在指定时间内还是没有获得锁),则返回 false。

5、std::lock_guard 与 std::unique_lock。

上面介绍的方法对 mutex 的加解锁都是手动的,接下来介绍 std::lock_guard 与 std::unique_lock 对 mutex 进行自动加解锁。
例如:

  1. #include //std::cout
  2. #include //std::thread
  3. #include //std::mutex
  4. #include //std::atomic
  5. using namespace std;
  6. mutex g_mtx1;
  7. atomic_int num1{ 0 };
  8. void fun1()
  9. {
  10. for (int i = 0; i <</span> 10000000; i++)
  11. {
  12. unique_lock ulk(g_mtx1);
  13. num1++;
  14. }
  15. }
  16. mutex g_mtx2;
  17. atomic_int num2{ 0 };
  18. void fun2()
  19. {
  20. for (int i = 0; i <</span> 10000000; i++)
  21. {
  22. lock_guard lckg(g_mtx2);
  23. num2++;
  24. }
  25. }
  26. int main()
  27. {
  28. thread th1(fun1);
  29. thread th2(fun1);
  30. th1.join();
  31. th2.join();
  32. cout << "num1=" << num1 << endl;
  33. thread th3(fun2);
  34. thread th4(fun2);
  35. th3.join();
  36. th4.join();
  37. cout << "num2=" << num2 << endl;
  38. return 0;
  39. }
  40. 运行结果:
  41. num1=20000000
  42. num2=20000000
接下来,分析一下这两者的区别:
(1)unique_lock。
unique_lock ulk(g_mtx1);
线程没有 g_mtx1 的所有权,根据块语句的循环实现自动加解锁。
线程根据 g_mtx1 属性,来判断是否可以加锁、解锁。
(2)lock_guard。
lock_guard lckg(g_mtx2);
线程拥有 g_mtx2 的所有权,实现自动加解锁。
线程读取 g_mtx2 失败时,则一直等待,直到读取成功。
线程会把  g_mtx2 一直占有,直到当前线程完成才释放,其它线程才能访问。