一、代码——命令行模式
//main.m
#import <Foundation/Foundation.h> struct __block_impl {
void *isa;
int Flags;
int Reserved;
void *FuncPtr;
}; struct __main_block_desc_0 {
size_t reserved;
size_t Block_size;
}; struct __main_block_impl_0 {
struct __block_impl impl;
struct __main_block_desc_0* Desc;
int age;
}; int main(int argc, const char * argv[]) {
@autoreleasepool {
// ^{
// NSLog(@"This is a block");
// }(); int age = ;
void (^block)(int, int) = ^(int a, int b){
NSLog(@"This is a block:%d", age);
NSLog(@"a:%d b:%d", a, b);
}; struct __main_block_impl_0 *blockStruct = (__bridge struct __main_block_impl_0 *)block;
block(, );
}
return ;
}
分析:以下代码的前提,因为我们知道block底层的构造就是上述结构体的构造,桥接的目的就是展示这样的结构体内部是怎样的;
struct __main_block_impl_0 *blockStruct = (__bridge struct __main_block_impl_0 *)block;
二、调试
//lldb模式
1)第一个断点
2)第二个断点
3)转入汇编
4)汇编界面
分析:
1)我们发现内部变量的层次感:
第一层:包含impl、Desc、age;
第二层:impl包含isa、Flags、Reserved、FuncPtr;
2)block大括号内部的代码的第一行的地址跟FuncPtr指针指向的地址是一样的,那么block大括号内的代码是如何存放的,跟FuncPtr指针有什么关系?往下看;
三、将main.m文件转成底层实现代码(即C++代码)
1)命令行:xcrun -sdk iphoneos clang -arch arm64 -rewrite-objc main.m
说明:警告不用管;
2)找到main.cpp文件
3)拖入文件并打开
说明:不对mian.cpp文件编译的目的是,自己可以任意对该文件的代码操作而不报错;
说明:
1)上面两张图中,1、2、3是一一对应关系(1:为block要引用的外部变量;2:定义的block;3:调用block);
2)在2处,本人把一些强制转换去除了(如:void (*)等),便于阅读;
四、底层代码分析
1)block结构体(对2的分析)
很明显,block是一个指针,指向__main_block_impl_0,那__main_block_impl_0又是什么呢,往下看;
struct __main_block_impl_0 {
struct __block_impl impl;
struct __main_block_desc_0* Desc;
int age;
__main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int _age, int flags=) : age(_age) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
__main_block_impl_0是个结构体,内部成员变量有__block_impl类型的结构体变量,__main_block_desc_0类型的结构体变量,外部应用变量,以及一个__main_block_impl_0方法(该方法名跟所在的结构体名称相同,为C++的一个构造方法,类似于init方法);
<1>__block_impl
struct __block_impl {
void *isa;
int Flags;
int Reserved;
void *FuncPtr;
};
该结构体有四个成员变量,这跟上述lldb模式下显示的成员变量相同,而第一个成员变量为isa指针,我们知道这是oc对象(实例、类、元类)的专属标志,很显然__main_block_impl_0是一个oc对象,而oc对象的本质就是在内存中为结构体,此处完全吻合;
<2>__main_block_desc_0
static struct __main_block_desc_0 {
size_t reserved;
size_t Block_size;
} __main_block_desc_0_DATA = { , sizeof(struct __main_block_impl_0)};
该结构体有两个成员变量,同时定义了一个结构体变量并对其赋值,reserved赋值为0,Block_size赋值为__main_block_impl_0即block的内存大小;
<3>__main_block_impl_0构造函数
__main_block_impl_0在main 函数中传了三个参数:
//__main_block_func_0参数
static void __main_block_func_0(struct __main_block_impl_0 *__cself, int a, int b) {
int age = __cself->age; // bound by copy NSLog((NSString *)&__NSConstantStringImpl__var_folders_tb_zgsq5gq15rd3zvbdmw1c09y80000gn_T_main_51dde3_mi_0, age);
NSLog((NSString *)&__NSConstantStringImpl__var_folders_tb_zgsq5gq15rd3zvbdmw1c09y80000gn_T_main_51dde3_mi_1, a, b);
}
很显然,__main_block_func_0函数存放的是block大括号里面的代码,而该函数是直接赋值给__main_block_impl_0构造函数的第一个参数fp指针,而fp又赋值给__block_impl结构体中的FuncPtr变量,因此,回顾上述lldb模式,FuncPtr指针存放的地址跟37号断点处转入汇编模式显示的首地址是一样的,结合此处,可以肯定,FuncPtr变量指向block大括号内的代码,该代码存放在内存中的分配好的函数中(__main_block_func_0);
//__main_block_desc_0_DATA参数
__main_block_desc_0_DATA是一个结构体,包含了block的内存大小,最终赋值给__main_block_desc_0结构体类型变量Desc;
//age直接赋值给_age
构造函数中的第四个参数flags默认设置为0;
2)block调用(对3的分析)
block调用代码可以简化成以下代码
(__block_impl *)block->FuncPtr(block, , );
<1>参数:经上述分析,我们知道FuncPtr指向block大括号内的代码块即__main_block_func_0函数,该函数共有三个参数,block本身,和两个int类型变量,实参与形参一一对应,这点没问题;
<2>强引用:因为block是一个结构体指针,其引用结构体变量只能通过"->"形式引用(如果是结构体变量非指针,则可以通过点(.)引用——此处是C语言语法知识,稍啰嗦了点!);
但是FuncPtr并不是block(即__main_block_impl_0)结构体的成员变量,为什么能直接引用,而不应该是block->impl.FuncPtr吗?
我们看到block进行了强制转换(__block_impl *),而__block_impl结构体中是存在FuncPtr变量的,但这完全是两个不同的结构体,也不能强制转换引用啊?
我们可以看到,__block_impl结构体在__main_block_impl_0结构体中是第一个成员变量类型,即__main_block_impl_0的首地址其实就是__block_impl结构体的首地址,也就是说,__main_block_impl_0结构体的地址是从isa指针变量开始的,即__main_block_impl_0结构体在__block_impl结构体的大小范围内跟__block_impl结构体是完全重合的(其实就是同一片内存),只不过__main_block_impl_0结构体大小要比__block_impl结构体大——因此,经过强制转换后block完全可以直接引用FuncPtr成员变量;
五、结论
【1】block本质是一个oc对象,以结构体形式存放在内存中;block本身是一个指针,存放的是该结构体的内存地址(可以把block理解成函数名——函数名也是指针,指向函数的入口地址);
【2】block大括号内的代码存放在固定的函数中,该函数的入口地址存放在block结构体的成员变量指针(FuncPtr)中;
【3】block结构体分为函数调用结构体变量impl(包含isa指针变量、函数调用指针变量)、信息描述结构体指针变量Desc(包含block内存大小成员变量)、外部引用变量(age),以及构造函数;
如下图所示(构造函数没有写出来,size即为block内存大小):
block本质探寻一之内存结构的更多相关文章
-
block本质探寻七之内存管理
说明: <1>阅读本问,请参照block前述文章加以理解: <2>环境:ARC: <3>变量类型:基本数据类型或者对象类型的auto局部变量: 一.三种情形 //代 ...
-
block本质探寻二之变量捕获
一.代码 说明:本文章须结合文章<block本质探寻一之内存结构>和<class和object_getClass方法区别>加以理解: //main.m #import < ...
-
block本质探寻三之block类型
一.oc代码 提示:看本文章之前,最好按顺序来看: //代码 void test1() { ; void(^block1)(void) = ^{ NSLog(@"block1----&quo ...
-
block本质探寻八之循环引用
说明:阅读本文,请参照之前的block文章加以理解: 一.循环引用的本质 //代码——ARC环境 void test1() { Person *per = [[Person alloc] init]; ...
-
block本质探寻六之修改变量
说明: <1>阅读本文章,请参照前面的block文章加以理解: <2>本文的变量指的是auto类型的局部变量(包括实例对象): <3>ARC和MRC两种模式均适用: ...
-
block本质探寻五之atuto类型局部实例对象
说明:阅读本文章,请参考之前的block文章加以理解: 一.栈区block分析 //代码 //ARC void test1() { { Person *per = [[Person alloc] in ...
-
block本质探寻四之copy
说明: <1>阅读本文,最好阅读之前的block文章加以理解: <2>本文内容:三种block类型的copy情况(MRC).是否深拷贝.错误copy: 一.MRC模式下,三种b ...
-
block 的内存结构衍生出来的面试题
今天在群里看到大佬们在讨论一个面试题,问如下代码在 32bit 和 64bit 系统上分别报什么错误: #import <Foundation/Foundation.h> int main ...
-
iOS开发系列-Block本质篇
概述 在iOS开发中Block使用比较广泛,对于使用以及一些常规的技术点这里不再赘述,主要利用C++角度分析Block内部数据底层实现,解开开发中为什么这样编写代码解决问题. Block底层结构窥探 ...
随机推荐
-
基于ADO.NET的SqlHelper类
1.使用Connection连接数据库的步骤: (1).添加命名空间 System.Data.SqlClient(注意:初学者经常会忘记) (2)定义连接字符串.连接SQL Server 数据库时: ...
-
python configparser模块
来看一个好多软件的常见文档格式如下: [DEFAULT] ServerAliveInterval = 45 Compression = yes CompressionLevel = 9 Forward ...
-
oracle 存储过程的写法
create or replace procedure Getyc is v_id VARCHAR2(36); v_date VARCHAR2(4); begin declare begi ...
-
网站实现特定某个地区访问执行跳转(js方法)
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
-
条码解析的一片js
function HIBC_CheckCode(code) { var nonCheckCode = code.substr(0, code.length - 1); var arr ...
-
sun.misc.unsafe类的使用
http://blog.csdn.net/fenglibing/article/details/17138079
-
Prim算法的简单分析
Prim算法主要的思路:将点集一分为二,通过找到两个点集之间的最短距离,来确定最小生成树,每次确定最短距离后,对两个点集进行更新. 具体的实现过程:难点就是如何找到两个点集之间的最短距离,这里设置两个 ...
-
ionic中ng-options与默认选中第一项的问题
1. select中动态添加数据时发现一个选项为空,在选中了其他选项时,在点击时发现第一个空选项消失了,所有我们需要设置一个默认的选项: 2. 开始的时候我用的方法: <select class ...
-
bzoj2961 共点圆 (CDQ分治, 凸包)
/* 可以发现可行的圆心相对于我们要查询的点是在一个半平面上, 然后我们要做的就是动态维护凸壳然后用这个半平面去切它 看看是否是在合法的那一面 然后cdq分治就可以了 代码基本是抄的, */ #inc ...
-
Android通知栏沉浸式/透明化完整解决方案
转载请注明出处:http://www.cnblogs.com/cnwutianhao/p/6640649.html 参考文献:https://github.com/ljgsonx/adaptiveSt ...