详解Linux2.6内核中基于platform机制的驱动模型 (经典)

时间:2022-12-03 19:06:07

【摘要】本文以Linux 2.6.25 内核为例,分析了基于platform总线的驱动模型。首先介绍了Platform总线的基本概念,接着介绍了platform device和platform driver的定义和加载过程,分析了其与基类device 和driver的派生关系及在此过程中面向对象的设计思想。最后以ARM S3C2440中I2C控制器为例介绍了基于platform总线的驱动开发流程。

【关键字】platform_bus, platform_device, resource , platform_driver, file_operations

目录

1    何谓platform bus?    2

2    device和platform_device    3

3    device_register和platform_device_register    5

4    device_driver和platform driver    8

5    driver_register 和platform_driver_register    10

6    bus、device及driver三者之间的关系    17

7    哪些适用于plarform驱动?    18

8    基于platform总线的驱动开发流程    18

      8.1    初始化platform_bus    19

      8.2    定义platform_device    22

      8.3    注册platform_device    22

      8.4    定义platform_driver    28

     8.5    注册platform_driver    29

     8.6    操作设备    32

1    何谓platform bus?

        Linux系统中许多部分对设备是如何链接的并不感兴趣,但是他们需要知道哪些类型的设备是可以使用的。设备模型提供了一种机制来对设备进行分类,在更高的功能层面上描述这些设备,并使得这些设备对用户空间可见。因此从2.6内核开始引入了设备模型。

总线是处理器和一个或多个设备之间的通道,在设备模型中, 所有的设备都通过总线相连。总线可以相互插入。设备模型展示了总线和它们所控制的设备之间的实际连接。

Platform总线是2.6 kernel中最近引入的一种虚拟总线,主要用来管理CPU的片上资源,具有更好的移植性,因此在2.6 kernel中,很多驱动都用platform改写了。

platform_bus_type的定义如下:

#linux+v2.6.25/drivers/base/platform.c#L609 

609struct bus_type platform_bus_type = {

 610        .name           = "platform",

 611        .dev_attrs      = platform_dev_attrs,

 612        .match          = platform_match,

 613        .uevent         = platform_uevent,

 614        .suspend        = platform_suspend,

 615        .suspend_late   = platform_suspend_late,

 616        .resume_early   = platform_resume_early,

 617        .resume         = platform_resume,

 618};

 619EXPORT_SYMBOL_GPL(platform_bus_type);

#linux+v2.6.25/include/linux/device.h#L55

  55struct bus_type {

  56        const char              *name;

  57        struct bus_attribute    *bus_attrs;

  58        struct device_attribute *dev_attrs;

  59        struct driver_attribute *drv_attrs;

  60

  61        int (*match)(struct device *dev, struct device_driver *drv);

  62        int (*uevent)(struct device *dev, struct kobj_uevent_env *env);

  63        int (*probe)(struct device *dev);

  64        int (*remove)(struct device *dev);

  65        void (*shutdown)(struct device *dev);

  66

  67        int (*suspend)(struct device *dev, pm_message_t state);

  68        int (*suspend_late)(struct device *dev, pm_message_t state);

  69        int (*resume_early)(struct device *dev);

  70        int (*resume)(struct device *dev);

  71

  72        struct bus_type_private *p;

  73};

总线名称是"platform",其只是bus_type的一种,定义了总线的属性,同时platform_bus_type还有相关操作方法,如挂起、中止、匹配及hotplug事件等。

总线bus是联系driver和device的中间枢纽。Device通过所属的bus找到driver,由match操作方法进行匹配。

Bus、driver及devices的连接关系

2    device和platform_device

Plarform device会有一个名字用于driver binding(在注册driver的时候会查找driver的目标设备的bus位置,这个过程称为driver binding),另外IRQ以及地址空间等资源也要给出 。

platform_device结构体用来描述设备的名称、资源信息等。该结构被定义在

#linux+v2.6.25/include/linux/platform_device.h#L16中,定义原型如下:

16struct platform_device {

  17        const char      * name; //定义平台设备的名称,此处设备的命名应和相应驱动程序命名一致

18        int             id;

  19        struct device   dev;

  20        u32             num_resources;

  21        struct resource * resource;  //定义平台设备的资源

  22};

在这个结构里封装了struct device及struct resource。可知:platform_device由device派生而来,是一种特殊的device。

下面来看一下platform_device结构体中最重要的一个成员struct resource * resource。struct resource被定义在#linux+v2.6.25/include/linux /ioport.h#L18中,定义原型如下:

  14/*

  15 * Resources are tree-like, allowing

  16 * nesting etc..

  17 */

  18struct resource {

  19        resource_size_t start;  //定义资源的起始地址

  20        resource_size_t end;  //定义资源的结束地址

  21        const char *name; //定义资源的名称

  22        unsigned long flags; 定义资源的类型,比如MEM,IO,IRQ,DMA类型

  23        struct resource *parent, *sibling, *child;

  24};

这个结构表示设备所拥有的资源,即I/O端口、I/O映射内存、中断及DMA等。这里的地址指的是物理地址。

另外还需要注意platform_device中的device结构,它详细描述了设备的情况,其为所有设备的基类,定义如下:

#linux+v2.6.25/include/linux/device.h#L422

422struct device {

 423        struct klist            klist_children;

 424        struct klist_node       knode_parent;   /* node in sibling list */

 425        struct klist_node       knode_driver;

 426        struct klist_node       knode_bus;

 427        struct device           *parent;

 428

 429        struct kobject kobj;

 430        char    bus_id[BUS_ID_SIZE];    /* position on parent bus */

 431        struct device_type      *type;

 432        unsigned                is_registered:1;

 433        unsigned                uevent_suppress:1;

 434

 435        struct semaphore        sem;    /* semaphore to synchronize calls to

 436                                         * its driver.

 437                                         */

 438

 439        struct bus_type *bus;           /* type of bus device is on */

 440        struct device_driver *driver;   /* which driver has allocated this

 441                                           device */

 442        void            *driver_data;   /* data private to the driver */

 443        void            *platform_data; /* Platform specific data, device

 444                                           core doesn't touch it */

 445        struct dev_pm_info      power;

 446

 447#ifdef CONFIG_NUMA

 448        int             numa_node;      /* NUMA node this device is close to */

 449#endif

 450        u64             *dma_mask;      /* dma mask (if dma'able device) */

 451        u64             coherent_dma_mask;/* Like dma_mask, but for

 452                                             alloc_coherent mappings as

 453                                             not all hardware supports

 454                                             64 bit addresses for consistent

 455                                             allocations such descriptors. */

 456

 457        struct device_dma_parameters *dma_parms;

 458

 459        struct list_head        dma_pools;      /* dma pools (if dma'ble) */

 460

 461        struct dma_coherent_mem *dma_mem; /* internal for coherent mem

 462                                             override */

 463        /* arch specific additions */

 464        struct dev_archdata     archdata;

 465

 466        spinlock_t              devres_lock;

 467        struct list_head        devres_head;

 468

 469        /* class_device migration path */

 470        struct list_head        node;

 471        struct class            *class;

 472        dev_t                   devt;   /* dev_t, creates the sysfs "dev" */

 473        struct attribute_group  **groups;       /* optional groups */

 474

 475        void    (*release)(struct device *dev);

 476};

 477

3    device_register和platform_device_register

#linux+v2.6.25/drivers/base/core.c#L881

 870/**

 871 * device_register - register a device with the system.

 872 * @dev: pointer to the device structure

 873 *

 874 * This happens in two clean steps - initialize the device

 875 * and add it to the system. The two steps can be called

 876 * separately, but this is the easiest and most common.

 877 * I.e. you should only call the two helpers separately if

 878 * have a clearly defined need to use and refcount the device

 879 * before it is added to the hierarchy.

 880 */

 881int device_register(struct device *dev)

 882{

 883        device_initialize(dev);

 884        return device_add(dev);

 885}

初始化一个设备,然后加入到系统中。

#linux+v2.6.25/drivers/base/platform.c#L325

316/**

 317 * platform_device_register - add a platform-level device

 318 * @pdev: platform device we're adding

 319 */

 320int platform_device_register(struct platform_device *pdev)

 321{

 322        device_initialize(&pdev->dev);

 323        return platform_device_add(pdev);

 324}

 325EXPORT_SYMBOL_GPL(platform_device_register);

我们看到注册一个platform device分为了两部分,初始化这个platform_device,然后将此platform_device添加到platform总线中。输入参数platform_device可以是静态的全局设备。

另外一种机制就是动态申请platform_device_alloc一个platform_device设备,然后通过platform_device_add_resources及platform_device_add_data等添加相关资源和属性。

无论哪一种platform_device,最终都将通过platform_device_add注册到platform总线上。

229/**

 230 * platform_device_add - add a platform device to device hierarchy

 231 * @pdev: platform device we're adding

 232 *

 233 * This is part 2 of platform_device_register(), though may be called

 234 * separately _iff_ pdev was allocated by platform_device_alloc().

 235 */

 236int platform_device_add(struct platform_device *pdev)

 237{

 238        int i, ret = 0;

 239

 240        if (!pdev)

 241                return -EINVAL;

 242

               初始化设备的parent为platform_bus,初始化设备的总线为platform_bus_type。

 243        if (!pdev->dev.parent)

 244                pdev->dev.parent = &platform_bus;

 245

 246        pdev->dev.bus = &platform_bus_type;

 247

/*++++++++++++++

The platform_device.dev.bus_id is the canonical name for the devices.

It's built from two components:

* platform_device.name ... which is also used to for driver matching.

* platform_device.id ... the device instance number, or else "-1"

to indicate there's only one.

These are concatenated, so name/id "serial"/0 indicates bus_id "serial.0", and

"serial/3" indicates bus_id "serial.3"; both would use the platform_driver

named "serial". While "my_rtc"/-1 would be bus_id "my_rtc" (no instance id)

and use the platform_driver called "my_rtc".

++++++++++++++*/

 248        if (pdev->id != -1)

 249                snprintf(pdev->dev.bus_id, BUS_ID_SIZE, "%s.%d", pdev->name,

 250                         pdev->id);

 251        else

 252                strlcpy(pdev->dev.bus_id, pdev->name, BUS_ID_SIZE);

 253

                设置设备struct device 的bus_id成员,留心这个地方,在以后还需要用到这个的。

 254        for (i = 0; i < pdev->num_resources; i++) {

 255                struct resource *p, *r = &pdev->resource[i];

 256

 257                if (r->name == NULL)

 258                        r->name = pdev->dev.bus_id;

 259

 260                p = r->parent;

 261                if (!p) {

 262                        if (r->flags & IORESOURCE_MEM)

 263                                p = &iomem_resource;

 264                        else if (r->flags & IORESOURCE_IO)

 265                                p = &ioport_resource;

 266                }

                       //resources分为两种IORESOURCE_MEM和IORESOURCE_IO

                      //CPU对外设IO端口物理地址的编址方式有两种:I/O映射方式和内存映射方式

 267

 268                if (p && insert_resource(p, r)) {

 269                        printk(KERN_ERR

 270                               "%s: failed to claim resource %d/n",

 271                               pdev->dev.bus_id, i);

 272                        ret = -EBUSY;

 273                        goto failed;

 274                }

 275        }

 276

 277        pr_debug("Registering platform device '%s'. Parent at %s/n",

 278                 pdev->dev.bus_id, pdev->dev.parent->bus_id);

 279

 280        ret = device_add(&pdev->dev);

 281        if (ret == 0)

 282                return ret;

 283

 284 failed:

 285        while (--i >= 0)

 286                if (pdev->resource[i].flags & (IORESOURCE_MEM|IORESOURCE_IO))

 287                        release_resource(&pdev->resource[i]);

 288        return ret;

 289}

 290EXPORT_SYMBOL_GPL(platform_device_add);

由platform_device_register和platform_device_add的实现可知,device_register()和 platform_device_register()都会首先初始化设备,区别在于第二步:其实platform_device_add()包括 device_add(),不过要先注册resources,然后将设备挂接到特定的platform总线。

4    device_driver和platform driver

        Platform device是一种device自己是不会做事情的,要有人为它做事情,那就是platform driver。platform driver遵循linux系统的driver model。对于device的discovery/enumerate都不是driver自己完成的而是由由系统的driver注册机制完成。 driver编写人员只要将注册必须的数据结构初始化并调用注册driver的kernel API就可以了。

接下来来看platform_driver结构体的原型定义,在

#linux+v2.6.25/include/linux/platform_device.h#L48中,代码如下:

48 struct platform_driver {

  49        int (*probe)(struct platform_device *);

  50        int (*remove)(struct platform_device *);

  51        void (*shutdown)(struct platform_device *);

  52        int (*suspend)(struct platform_device *, pm_message_t state);

  53        int (*suspend_late)(struct platform_device *, pm_message_t state);

  54        int (*resume_early)(struct platform_device *);

  55        int (*resume)(struct platform_device *);

  56        struct device_driver driver;

  57};

可见,它包含了设备操作的几个功能函数,同时包含了一个device_driver结构,说明device_driver是 platform_driver的基类。驱动程序中需要初始化这个变量。下面看一下这个变量的定义,位于

#linux+v2.6.25/include/linux/device.h#L121中:

 

121struct device_driver {

 122        const char              *name;

 123        struct bus_type         *bus;

 124

 125        struct module           *owner;

 126        const char              *mod_name;      /* used for built-in modules */

 127

 128        int (*probe) (struct device *dev);

 129        int (*remove) (struct device *dev);

 130        void (*shutdown) (struct device *dev);

 131        int (*suspend) (struct device *dev, pm_message_t state);

 132        int (*resume) (struct device *dev);

 133        struct attribute_group **groups;

 134

 135        struct driver_private *p;

 136};

device_driver提供了一些操作接口,但其并没有实现,相当于一些虚函数,由派生类platform_driver进行重载,无论何种类 型的 driver都是基于device_driver派生而来的,具体的各种操作都是基于统一的基类接口的,这样就实现了面向对象的设计。

需要注意这两个变量:name和owner。其作用主要是为了和相关的platform_device关联起来,owner的作用是说明模块的所有者,驱动程序中一般初始化为THIS_MODULE。

device_driver结构中也有一个name变量。platform_driver从字面上来看就知道是设备驱动。设备驱动是为谁服务的呢?当然是设备了。内核正是通过这个一致性来为驱动程序找到资源,即 platform_device中的resource。

5    driver_register 和platform_driver_register

内核提供的platform_driver结构体的注册函数为platform_driver_register(),其原型定义在 #linux+v2.6.25/drivers/base/platform.c#L458文件中,具体实现代码如下:

439/**

 440 * platform_driver_register

 441 * @drv: platform driver structure

 442 */

 443int platform_driver_register(struct platform_driver *drv)

 444{

 445        drv->driver.bus = &platform_bus_type;

              /*设置成platform_bus_type这个很重要,因为driver和device是通过bus联系在一起的,具体在本例中是通 过                platform_bus_type中注册的回调例程和属性来是实现的, driver与device的匹配就是通过 platform_bus_type注册的回调例程platform_match ()来完成的。*/

446        if (drv->probe)

 447                drv->driver.probe = platform_drv_probe;

                //在really_probe函数中,回调了platform_drv_probe函数

448        if (drv->remove)

 449                drv->driver.remove = platform_drv_remove;

 450        if (drv->shutdown)

 451                drv->driver.shutdown = platform_drv_shutdown;

 452        if (drv->suspend)

 453                drv->driver.suspend = platform_drv_suspend;

 454        if (drv->resume)

 455                drv->driver.resume = platform_drv_resume;

 456        return driver_register(&drv->driver);

 457}

 458EXPORT_SYMBOL_GPL(platform_driver_register);

不要被上面的platform_drv_XXX吓倒了,它们其实很简单,就是将struct device转换为struct platform_device和struct platform_driver,然后调用platform_driver中的相应接口函数。那为什么不直接调用platform_drv_XXX等接口 呢?这就是Linux内核中面向对象的设计思想。

device_driver提供了一些操作接口,但其并没有实现,相当于一些虚函数,由派生类platform_driver进行重载,无论何种类型的 driver都是基于device_driver派生而来的,device_driver中具体的各种操作都是基于统一的基类接口的,这样就实现了面向对 象的设计。

在文件#linux+v2.6.25/drivers/base/driver.c#L234中,实现了driver_register()函数。

209/**

 210 * driver_register - register driver with bus

 211 * @drv: driver to register

 212 *

 213 * We pass off most of the work to the bus_add_driver() call,

 214 * since most of the things we have to do deal with the bus

 215 * structures.

 216 */

 217int driver_register(struct device_driver *drv)

 218{

 219        int ret;

 220

              //如果总线的方法和设备自己的方法同时存在,将打印告警信息,对于platform bus,其没有probe等接口

 221        if ((drv->bus->probe && drv->probe) ||

 222            (drv->bus->remove && drv->remove) ||

 223            (drv->bus->shutdown && drv->shutdown))

 224                printk(KERN_WARNING "Driver '%s' needs updating - please use "

 225                        "bus_type methods/n", drv->name);

//将驱动挂接到总线上,通过总线来驱动设备。

 226        ret = bus_add_driver(drv);

 227        if (ret)

 228                return ret;

 229        ret = driver_add_groups(drv, drv->groups);

 230        if (ret)

 231                bus_remove_driver(drv);

 232        return ret;

 233}

 234EXPORT_SYMBOL_GPL(driver_register);

644/**

 645 * bus_add_driver - Add a driver to the bus.

 646 * @drv: driver.

 647 */

 648int bus_add_driver(struct device_driver *drv)

 649{

 650        struct bus_type *bus;

 651        struct driver_private *priv;

 652        int error = 0;

 653

 654        bus = bus_get(drv->bus);

 655        if (!bus)

 656                return -EINVAL;

 657

 658        pr_debug("bus: '%s': add driver %s/n", bus->name, drv->name);

 659

 660        priv = kzalloc(sizeof(*priv), GFP_KERNEL);

 661        if (!priv) {

 662                error = -ENOMEM;

 663                goto out_put_bus;

 664        }

 665        klist_init(&priv->klist_devices, NULL, NULL);

 666        priv->driver = drv;

 667        drv->p = priv;

 668        priv->kobj.kset = bus->p->drivers_kset;

 669        error = kobject_init_and_add(&priv->kobj, &driver_ktype, NULL,

 670                                     "%s", drv->name);

 671        if (error)

 672                goto out_unregister;

 673

 674        if (drv->bus->p->drivers_autoprobe) {

 675                error = driver_attach(drv);

 676                if (error)

 677                        goto out_unregister;

 678        }

 679        klist_add_tail(&priv->knode_bus, &bus->p->klist_drivers);

 680        module_add_driver(drv->owner, drv);

 681

 682        error = driver_create_file(drv, &driver_attr_uevent);

 683        if (error) {

 684                printk(KERN_ERR "%s: uevent attr (%s) failed/n",

 685                        __FUNCTION__, drv->name);

 686        }

 687        error = driver_add_attrs(bus, drv);

 688        if (error) {

 689                /* How the hell do we get out of this pickle? Give up */

 690                printk(KERN_ERR "%s: driver_add_attrs(%s) failed/n",

 691                        __FUNCTION__, drv->name);

 692        }

 693        error = add_bind_files(drv);

 694        if (error) {

 695                /* Ditto */

 696                printk(KERN_ERR "%s: add_bind_files(%s) failed/n",

 697                        __FUNCTION__, drv->name);

 698        }

 699

 700        kobject_uevent(&priv->kobj, KOBJ_ADD);

 701        return error;

 702out_unregister:

 703        kobject_put(&priv->kobj);

 704out_put_bus:

 705        bus_put(bus);

 706        return error;

 707}

如果总线上的driver是自动probe的话,则将该总线上的driver和device绑定起来。

#linux+v2.6.25/drivers/base/dd.c#L285

272/**

 273 * driver_attach - try to bind driver to devices.

 274 * @drv: driver.

 275 *

 276 * Walk the list of devices that the bus has on it and try to

 277 * match the driver with each one.  If driver_probe_device()

 278 * returns 0 and the @dev->driver is set, we've found a

 279 * compatible pair.

 280 */

 281int driver_attach(struct device_driver *drv)

 282{

 283        return bus_for_each_dev(drv->bus, NULL, drv, __driver_attach);

 284}

 285EXPORT_SYMBOL_GPL(driver_attach);

扫描该总线上的每一个设备,将当前driver和总线上的设备进行match,如果匹配成功,则将设备和driver绑定起来。

246static int __driver_attach(struct device *dev, void *data)

 247{

 248        struct device_driver *drv = data;

 249

 250        /*

 251         * Lock device and try to bind to it. We drop the error

 252         * here and always return 0, because we need to keep trying

 253         * to bind to devices and some drivers will return an error

 254         * simply if it didn't support the device.

 255         *

 256         * driver_probe_device() will spit a warning if there

 257         * is an error.

 258         */

 259

 260        if (dev->parent)        /* Needed for USB */

 261                down(&dev->parent->sem);

 262        down(&dev->sem);

//如果该设备尚没有匹配的driver,则尝试匹配。

 263        if (!dev->driver)

 264                driver_probe_device(drv, dev);

 265        up(&dev->sem);

 266        if (dev->parent)

 267                up(&dev->parent->sem);

 268

 269        return 0;

 270}

#linux+v2.6.25/drivers/base/dd.c#L187

170/**

 171 * driver_probe_device - attempt to bind device & driver together

 172 * @drv: driver to bind a device to

 173 * @dev: device to try to bind to the driver

 174 *

 175 * First, we call the bus's match function, if one present, which should

 176 * compare the device IDs the driver supports with the device IDs of the

 177 * device. Note we don't do this ourselves because we don't know the

 178 * format of the ID structures, nor what is to be considered a match and

 179 * what is not.

 180 *

 181 * This function returns 1 if a match is found, -ENODEV if the device is

 182 * not registered, and 0 otherwise.

 183 *

 184 * This function must be called with @dev->sem held.  When called for a

 185 * USB interface, @dev->parent->sem must be held as well.

 186 */

 187int driver_probe_device(struct device_driver *drv, struct device *dev)

 188{

 189        int ret = 0;

 190

 191        if (!device_is_registered(dev))

 192                return -ENODEV;

 193        if (drv->bus->match && !drv->bus->match(dev, drv))

 194                goto done;

 195

 196        pr_debug("bus: '%s': %s: matched device %s with driver %s/n",

 197                 drv->bus->name, __FUNCTION__, dev->bus_id, drv->name);

 198

 199        ret = really_probe(dev, drv);

 200

 201done:

 202        return ret;

 203}

193,如果该总线上的设备需要进行匹配,则验证是否匹配。对于platform总线,其匹配过程如下:

#linux+v2.6.25/drivers/base/platform.c#L555

542/**

 543 * platform_match - bind platform device to platform driver.

 544 * @dev: device.

 545 * @drv: driver.

 546 *

 547 * Platform device IDs are assumed to be encoded like this:

 548 * "<name><instance>", where <name> is a short description of the type of

 549 * device, like "pci" or "floppy", and <instance> is the enumerated

 550 * instance of the device, like '0' or '42'.  Driver IDs are simply

 551 * "<name>".  So, extract the <name> from the platform_device structure,

 552 * and compare it against the name of the driver. Return whether they match

 553 * or not.

 554 */

 555static int platform_match(struct device *dev, struct device_driver *drv)

 556{

 557        struct platform_device *pdev;

 558

 559        pdev = container_of(dev, struct platform_device, dev);

 560        return (strncmp(pdev->name, drv->name, BUS_ID_SIZE) == 0);

 561}

560,简单的进行字符串匹配,这也是我们强调platform_device和platform_driver中的name属性需要一致的原因。

匹配成功后,则调用probe接口。

#linux+v2.6.25/drivers/base/dd.c#L101

  98static atomic_t probe_count = ATOMIC_INIT(0);

  99static DECLARE_WAIT_QUEUE_HEAD(probe_waitqueue);

 100

 101static int really_probe(struct device *dev, struct device_driver *drv)

 102{

 103        int ret = 0;

 104

 105        atomic_inc(&probe_count);

 106        pr_debug("bus: '%s': %s: probing driver %s with device %s/n",

 107                 drv->bus->name, __FUNCTION__, drv->name, dev->bus_id);

 108        WARN_ON(!list_empty(&dev->devres_head));

 109

 110        dev->driver = drv;

 111        if (driver_sysfs_add(dev)) {

 112                printk(KERN_ERR "%s: driver_sysfs_add(%s) failed/n",

 113                        __FUNCTION__, dev->bus_id);

 114                goto probe_failed;

 115        }

 116

 117        if (dev->bus->probe) {

 118                ret = dev->bus->probe(dev);

 119                if (ret)

 120                        goto probe_failed;

 121        } else if (drv->probe) {

 122                ret = drv->probe(dev);

 123                if (ret)

 124                        goto probe_failed;

 125        }

 126

 127        driver_bound(dev);

 128        ret = 1;

 129        pr_debug("bus: '%s': %s: bound device %s to driver %s/n",

 130                 drv->bus->name, __FUNCTION__, dev->bus_id, drv->name);

 131        goto done;

 132

 133probe_failed:

 134        devres_release_all(dev);

 135        driver_sysfs_remove(dev);

 136        dev->driver = NULL;

 137

 138        if (ret != -ENODEV && ret != -ENXIO) {

 139                /* driver matched but the probe failed */

 140                printk(KERN_WARNING

 141                       "%s: probe of %s failed with error %d/n",

 142                       drv->name, dev->bus_id, ret);

 143        }

 144        /*

 145         * Ignore errors returned by ->probe so that the next driver can try

 146         * its luck.

 147         */

 148        ret = 0;

 149done:

 150        atomic_dec(&probe_count);

 151        wake_up(&probe_waitqueue);

 152        return ret;

 153}

如果bus和driver同时具备probe方法,则优先调用总线的probe函数。否则调用device_driver的probe函数,此 probe 函数是经过各种类型的driver重载的函数,这就实现了利用基类的统一方法来实现不同的功能。对于platform_driver来说,其就是:

#linux+v2.6.25/drivers/base/platform.c#L394

394static int platform_drv_probe(struct device *_dev)

 395{

 396        struct platform_driver *drv = to_platform_driver(_dev->driver);

 397        struct platform_device *dev = to_platform_device(_dev);

 398

 399        return drv->probe(dev);

 400}

然后调用特定platform_driver所定义的操作方法,这个是在定义某个platform_driver时静态指定的操作接口。

至此,platform_driver成功挂接到platform bus上了,并与特定的设备实现了绑定,并对设备进行了probe处理。

6    bus、device及driver三者之间的关系

在数据结构设计上,总线、设备及驱动三者相互关联。

platform device包含device,根据device可以获得相应的bus及driver。

设备添加到总线上后形成一个双向循环链表,根据总线可以获得其上挂接的所有device,进而获得了 platform device。根据device也可以获得驱动该总线上所有设备的相关driver。

platform driver包含driver,根据driver可以获得相应的bus,进而获得bus上所有的device,进一步获得platform device,根据name对driver与platform device进行匹配,匹配成功后将device与相应的driver关联起来,即实现了platform device和platform driver的关联。

匹配成功后调用driver的probe进而调用platform driver的probe,在probe里实现驱动特定的功能。

7    哪些适用于plarform驱动?

platform机制将设备本身的资源注册进内核,由内核统一管理,在驱动程序中使用这些资源时通过platform device提供的标准接口进行申请并使用。这样提高了驱动和资源管理的独立性,这样拥有更好的可移植性。platform机制的本身使用并不复杂,由两 部分组成:platform_device和platfrom_driver。Platform driver通过platform bus获取platform_device。

通常情况下只要和内核本身运行依赖性不大的外围设备,相对独立的,拥有各自独立的资源(地址总线和IRQs),都可以用 platform_driver来管理,而timer,irq等小系统之内的设备则最好不用platfrom_driver机制。

platform_device最大的特定是CPU直接寻址设备的寄存器空间,即使对于其他总线设备,设备本身的寄存器无法通过CPU总线访问,但总线的controller仍然需要通过platform bus来管理。

总之,platfrom_driver的根本目的是为了统一管理系统的外设资源,为驱动程序提供统一的接口来访问系统资源,将驱动和资源分离,提高程序的可移植性。

8    基于platform总线的驱动开发流程

基于Platform总线的驱动开发流程如下:

•    定义初始化platform bus

•    定义各种platform devices

•    注册各种platform devices

•    定义相关platform driver

•    注册相关platform driver

•    操作相关设备

以S3C24xx平台为例,来简单讲述下platform驱动的实现流程。

8.1    初始化platform_bus

Platform总线的初始化是在platform_bus_init()完成的,代码如下:

#linux+v2.6.25/drivers/base/platform.c#L621

  26struct device platform_bus = {

  27        .bus_id         = "platform",

  28};

  29EXPORT_SYMBOL_GPL(platform_bus);

621int __init platform_bus_init(void)

 622{

 623        int error;

 624

 625        error = device_register(&platform_bus);

 626        if (error)

 627                return error;

 628        error =  bus_register(&platform_bus_type);

 629        if (error)

 630                device_unregister(&platform_bus);

 631        return error;

 632}

该函数创建了一个名为 “platform”的设备,后续platform的设备都会以此为parent。在sysfs中表示为:所有platform类型的设备都会添加在 platform_bus所代表的目录下,即 /sys/devices/platform下面。

-sh-3.1# ls /sys/devices/platform/   

Fixed MDIO bus.0     fsl-i2c.0            serial8250

fsl-ehci.0           fsl-i2c.1            serial8250.0

fsl-gianfar.0        mpc83xx_spi.0        uevent

fsl-gianfar.1        mpc83xx_wdt.0

fsl-gianfar_mdio.-5  power

-sh-3.1# ls /sys/

block/    class/    firmware/ kernel/   power/    

bus/      devices/  fs/       module/   

-sh-3.1# ls /sys/bus/

i2c/         of_platform/ pci_express/ scsi/        usb/         

mdio_bus/    pci/         platform/    spi/         

-sh-3.1# ls /sys/bus/i2c/

devices/           drivers_autoprobe  uevent             

drivers/           drivers_probe

-sh-3.1# ls /sys/bus/platform/devices/

Fixed MDIO bus.0/    fsl-gianfar_mdio.-5/ mpc83xx_wdt.0/

fsl-ehci.0/          fsl-i2c.0/           serial8250/

fsl-gianfar.0/       fsl-i2c.1/           serial8250.0/

fsl-gianfar.1/       mpc83xx_spi.0/       

-sh-3.1# ls /sys/bus/platform/drivers 

drivers/           drivers_autoprobe  drivers_probe      

-sh-3.1# ls /sys/bus/platform/drivers/

fsl-ehci/         fsl-gianfar_mdio/ mpc83xx_spi/      serial8250/

fsl-gianfar/      fsl-i2c/          mpc83xx_wdt/

platform_bus必须在系统注册任何platform driver和platform device之前初始化,那么这是如何实现的呢?

#linux+v2.6.25/drivers/base/init.c

14/**

  15 * driver_init - initialize driver model.

  16 *

  17 * Call the driver model init functions to initialize their

  18 * subsystems. Called early from init/main.c.

  19 */

  20void __init driver_init(void)

  21{

  22        /* These are the core pieces */

  23        devices_init();

  24        buses_init();

  25        classes_init();

  26        firmware_init();

  27        hypervisor_init();

  28

  29        /* These are also core pieces, but must come after the

  30         * core core pieces.

  31         */

  32        platform_bus_init();

  33        system_bus_init();

  34        cpu_dev_init();

  35        memory_dev_init();

  36}

init/main.c

start_kernel  》 rest_init  》 kernel_init  》 do_basic_setup》driver_init 》platform_bus_init

#linux+v2.6.25/drivers/base/init.c#L32

724/*

 725 * Ok, the machine is now initialized. None of the devices

 726 * have been touched yet, but the CPU subsystem is up and

 727 * running, and memory and process management works.

 728 *

 729 * Now we can finally start doing some real work..

 730 */

 731static void __init do_basic_setup(void)

 732{

 733        /* drivers will send hotplug events */

 734        init_workqueues();

 735        usermodehelper_init();

 736        driver_init();

 737        init_irq_proc();

 738        do_initcalls();

 739}

platform driver和platform device的初始化是在do_initcalls中进行的。

8.2    定义platform_device

#linux+v2.6.25/arch/arm/plat-s3c24xx/devs.c#L276中定义了系统的资源,是一个高度可移植的文件,大部分板级资源都在这里集中定义。

274/* I2C */

 275

 276static struct resource s3c_i2c_resource[] = {

 277        [0] = {

 278                .start = S3C24XX_PA_IIC,

 279                .end   = S3C24XX_PA_IIC + S3C24XX_SZ_IIC - 1,

 280                .flags = IORESOURCE_MEM,

 281        },

 282        [1] = {

 283                .start = IRQ_IIC,

 284                .end   = IRQ_IIC,

 285                .flags = IORESOURCE_IRQ,

 286        }

 287

 288};

 289

 290struct platform_device s3c_device_i2c = {

 291        .name             = "s3c2410-i2c",

 292        .id               = -1,

 293        .num_resources    = ARRAY_SIZE(s3c_i2c_resource),

 294        .resource         = s3c_i2c_resource,

 295};

 296

 297EXPORT_SYMBOL(s3c_device_i2c);

设备名称为s3c2410-i2c,“-1”只有一个i2c设备,两个资源s3c_i2c_resource,分别为i2c控制器的寄存器空间和中断信息。

8.3    注册platform_device

定义了platform_device后,需要添加到系统中,就可以调用函数platform_add_devices。

#linux+v2.6.25/arch/arm/mach-s3c2440/mach-smdk2440.c

smdk2440_devices将系统资源组织起来,统一注册进内核。

151static struct platform_device *smdk2440_devices[] __initdata = {

 152        &s3c_device_usb,

 153        &s3c_device_lcd,

 154        &s3c_device_wdt,

 155        &s3c_device_i2c,

 156        &s3c_device_iis,

 157};

166static void __init smdk2440_machine_init(void)

 167{

 168        s3c24xx_fb_set_platdata(&smdk2440_fb_info);

 169

 170        platform_add_devices(smdk2440_devices, ARRAY_SIZE(smdk2440_devices));

 171        smdk_machine_init();

 172}

 173

 174MACHINE_START(S3C2440, "SMDK2440")

 175        /* Maintainer: Ben Dooks <ben@fluff.org> */

 176        .phys_io        = S3C2410_PA_UART,

 177        .io_pg_offst    = (((u32)S3C24XX_VA_UART) >> 18) & 0xfffc,

 178        .boot_params    = S3C2410_SDRAM_PA + 0x100,

 179

 180        .init_irq       = s3c24xx_init_irq,

 181        .map_io         = smdk2440_map_io,

 182        .init_machine   = smdk2440_machine_init,

 183        .timer          = &s3c24xx_timer,

 184MACHINE_END

170        platform_add_devices(smdk2440_devices, ARRAY_SIZE(smdk2440_devices));

将系统所有资源注册进系统,在此之前platform bus需要初始化成功,否则无法将platform devices挂接到platform bus上。为了保证platform drive初始化时,相关platform资源已经注册进系统,smdk2440_machine_init需要很早执行,而其作为平台初始化 init_machine 时,将优先于系统所有驱动的初始化。

其调用顺序如下:

start_kernel》setup_arch》init_machine》arch_initcall(customize_machine)

#linux+v2.6.25/arch/arm/kernel/setup.c#L788

786arch_initcall(customize_machine);

 787

 788void __init setup_arch(char **cmdline_p)

 789{

 790        struct tag *tags = (struct tag *)&init_tags;

 791        struct machine_desc *mdesc;

 792        char *from = default_command_line;

 793

 794        setup_processor();

 795        mdesc = setup_machine(machine_arch_type);

//根据machine id获得移植时定义的machine desc结构

 796        machine_name = mdesc->name;

 797

 798        if (mdesc->soft_reboot)

 799                reboot_setup("s");

 800

 801        if (__atags_pointer)

 802                tags = phys_to_virt(__atags_pointer);

 803        else if (mdesc->boot_params)

 804                tags = phys_to_virt(mdesc->boot_params);

 805

 806        /*

 807         * If we have the old style parameters, convert them to

 808         * a tag list.

 809         */

 810        if (tags->hdr.tag != ATAG_CORE)

 811                convert_to_tag_list(tags);

 812        if (tags->hdr.tag != ATAG_CORE)

 813                tags = (struct tag *)&init_tags;

 814

 815        if (mdesc->fixup)

 816                mdesc->fixup(mdesc, tags, &from, &meminfo);

 817

 818        if (tags->hdr.tag == ATAG_CORE) {

 819                if (meminfo.nr_banks != 0)

 820                        squash_mem_tags(tags);

 821                save_atags(tags);

 822                parse_tags(tags);

 823        }

 824

 825        init_mm.start_code = (unsigned long) &_text;

 826        init_mm.end_code   = (unsigned long) &_etext;

 827        init_mm.end_data   = (unsigned long) &_edata;

 828        init_mm.brk        = (unsigned long) &_end;

 829

 830        memcpy(boot_command_line, from, COMMAND_LINE_SIZE);

 831        boot_command_line[COMMAND_LINE_SIZE-1] = '/0';

 832        parse_cmdline(cmdline_p, from);

 833        paging_init(&meminfo, mdesc);

 834        request_standard_resources(&meminfo, mdesc);

 835

 836#ifdef CONFIG_SMP

 837        smp_init_cpus();

 838#endif

 839

 840        cpu_init();

 841

 842        /*

 843         * Set up various architecture-specific pointers

 844         */

 845        init_arch_irq = mdesc->init_irq;

 846        system_timer = mdesc->timer;

 847        init_machine = mdesc->init_machine;

//对init_machine指针赋值

 848

 849#ifdef CONFIG_VT

 850#if defined(CONFIG_VGA_CONSOLE)

 851        conswitchp = &vga_con;

 852#elif defined(CONFIG_DUMMY_CONSOLE)

 853        conswitchp = &dummy_con;

 854#endif

 855#endif

 856}

777static void (*init_machine)(void) __initdata;

 778

 779static int __init customize_machine(void)

 780{

 781        /* customizes platform devices, or adds new ones */

 782        if (init_machine)

 783                init_machine();

 784        return 0;

 785}

 786arch_initcall(customize_machine);

arch_initcall将customize_machine放在特定的段中,系统将在某个地方运行所有的arch_initcall修饰的函数。

#linux+v2.6.25/include/linux/init.h#L182

152#ifndef MODULE  //非可加载模块,即编译链接进内核的代码

 153

 154#ifndef __ASSEMBLY__

 155

 156/* initcalls are now grouped by functionality into separate 

 157 * subsections. Ordering inside the subsections is determined

 158 * by link order. 

 159 * For backwards compatibility, initcall() puts the call in 

 160 * the device init subsection.

 161 *

 162 * The `id' arg to __define_initcall() is needed so that multiple initcalls

 163 * can point at the same handler without causing duplicate-symbol build errors.

 164 */

 165

 166#define __define_initcall(level,fn,id) /

 167        static initcall_t __initcall_##fn##id __used /

 168        __attribute__((__section__(".initcall" level ".init"))) = fn

 169

 170/*

 171 * A "pure" initcall has no dependencies on anything else, and purely

 172 * initializes variables that couldn't be statically initialized.

 173 *

 174 * This only exists for built-in code, not for modules.

 175 */

 176#define pure_initcall(fn)               __define_initcall("0",fn,0)

 177

 178#define core_initcall(fn)               __define_initcall("1",fn,1)

 179#define core_initcall_sync(fn)          __define_initcall("1s",fn,1s)

 180#define postcore_initcall(fn)           __define_initcall("2",fn,2)

 181#define postcore_initcall_sync(fn)      __define_initcall("2s",fn,2s)

 182#define arch_initcall(fn)               __define_initcall("3",fn,3)

 183#define arch_initcall_sync(fn)          __define_initcall("3s",fn,3s)

 184#define subsys_initcall(fn)             __define_initcall("4",fn,4)

 185#define subsys_initcall_sync(fn)        __define_initcall("4s",fn,4s)

 186#define fs_initcall(fn)                 __define_initcall("5",fn,5)

 187#define fs_initcall_sync(fn)            __define_initcall("5s",fn,5s)

 188#define rootfs_initcall(fn)             __define_initcall("rootfs",fn,rootfs)

 189#define device_initcall(fn)             __define_initcall("6",fn,6)

 190#define device_initcall_sync(fn)        __define_initcall("6s",fn,6s)

 191#define late_initcall(fn)               __define_initcall("7",fn,7)

 192#define late_initcall_sync(fn)          __define_initcall("7s",fn,7s)

 193

 194#define __initcall(fn) device_initcall(fn)

 195

 196#define __exitcall(fn) /

 197        static exitcall_t __exitcall_##fn __exit_call = fn

 198

。。。。。。。。。

 239#endif /* __ASSEMBLY__ */

 240

 241/**

 242 * module_init() - driver initialization entry point

 243 * @x: function to be run at kernel boot time or module insertion

 244 * 

 245 * module_init() will either be called during do_initcalls() (if

 246 * builtin) or at module insertion time (if a module).  There can only

 247 * be one per module.

 248 */

 249#define module_init(x)  __initcall(x);

 250

 251/**

 252 * module_exit() - driver exit entry point

 253 * @x: function to be run when driver is removed

 254 * 

 255 * module_exit() will wrap the driver clean-up code

 256 * with cleanup_module() when used with rmmod when

 257 * the driver is a module.  If the driver is statically

 258 * compiled into the kernel, module_exit() has no effect.

 259 * There can only be one per module.

 260 */

 261#define module_exit(x)  __exitcall(x);

 262

 263#else /* MODULE */

各种xx_core_initcall被定义到了不同的分级的段中

所以arch_initcall == __initcall_fn3 它将被链接器放于section  .initcall3.init. 中

module_init()==__initcall(fn)==device_initcall(fn)== __initcall_fn6

各个段的优先级由链接脚本定义

#linux+v2.6.25/include/asm-generic/vmlinux.lds.h#L328

#define INITCALLS       /

   *(.initcall0.init)      /

   *(.initcall0s.init)      /

   *(.initcall1.init)      /

   *(.initcall1s.init)      /

   *(.initcall2.init)      /

   *(.initcall2s.init)      /

   *(.initcall3.init)      /

   *(.initcall3s.init)      /

   *(.initcall4.init)      /

   *(.initcall4s.init)      /

   *(.initcall5.init)      /

   *(.initcall5s.init)      /

 *(.initcallrootfs.init)      /

   *(.initcall6.init)      /

   *(.initcall6s.init)      /

   *(.initcall7.init)      /

   *(.initcall7s.init)

这个__initcall_start是在文件arch/xxx/kernel/vmlinux.lds.S定义的:

__initcall_start = .;

   INITCALLS

  __initcall_end = .;

#linux+v2.6.25/init/main.c#L664

664static void __init do_initcalls(void)

 665{

 666        initcall_t *call;

 667        int count = preempt_count();

 668

 669        for (call = __initcall_start; call < __initcall_end; call++) {

.。。。。

 682

 683                result = (*call)();

 684

。。。 }               

 720        /* Make sure there is no pending stuff from the initcall sequence */

 721        flush_scheduled_work();

 722}

因此__initcall_fnx,数字越小,越先被调用,故arch_initcall优先于module_init所修饰的函数。

arch_initcall修饰的函数的调用顺序如下:

start_kernel  》 rest_init(在setup_arch之后)  》 kernel_init  》 do_basic_setup》do_initcalls(在driver_init()之后),因为platform_bus_init在此之前已经初 始化完毕了,便可将设备挂接到总线上了。

8.4    定义platform_driver

Platform bus和设备都定义好了后,需要定义一个platform driver用来驱动此设备。

对于设备来说:

290struct platform_device s3c_device_i2c = {

 291        .name             = "s3c2410-i2c",

 292        .id               = -1,

 293        .num_resources    = ARRAY_SIZE(s3c_i2c_resource),

 294        .resource         = s3c_i2c_resource,

 295};

 296

 297EXPORT_SYMBOL(s3c_device_i2c);

根据platform总线上device和driver的匹配规则可知,I2C 的platform driver的名字是s3c2410-i2c。

#linux+v2.6.25/drivers/i2c/busses/i2c-s3c2410.c#L1

903/* device driver for platform bus bits */

 904

 905static struct platform_driver s3c2410_i2c_driver = {

 906        .probe          = s3c24xx_i2c_probe,

 907        .remove         = s3c24xx_i2c_remove,

 908        .resume         = s3c24xx_i2c_resume,

 909        .driver         = {

 910                .owner  = THIS_MODULE,

 911                .name   = "s3c2410-i2c",

 912        },

 913};

8.5    注册platform_driver

#linux+v2.6.25/drivers/i2c/busses/i2c-s3c2410.c#L1

925static int __init i2c_adap_s3c_init(void)

 926{

 927        int ret;

 928

 929        ret = platform_driver_register(&s3c2410_i2c_driver);

 930        if (ret == 0) {

 931                ret = platform_driver_register(&s3c2440_i2c_driver);

 932                if (ret)

 933                        platform_driver_unregister(&s3c2410_i2c_driver);

 934        }

 935

 936        return ret;

 937}

 938

945module_init(i2c_adap_s3c_init);

 946module_exit(i2c_adap_s3c_exit);

在i2c_adap_s3c_init中注册s3c2410_i2c_driver,那么i2c_adap_s3c_init何时执行的呢?module_init(i2c_adap_s3c_init)表明其存放在initcall段,调用顺序如下:

init/main.c

start_kernel  》 rest_init  》 kernel_init  》 do_basic_setup》do_initcalls,因为platform_bus_init在此之前已经初始化完毕了,且设备已经注册到内核中 了,驱动将和内核绑定,并最终调用s3c24xx_i2c_probe。

748/* s3c24xx_i2c_probe

 749 *

 750 * called by the bus driver when a suitable device is found

 751*/

 752

 753static int s3c24xx_i2c_probe(struct platform_device *pdev)

 754{

 755        struct s3c24xx_i2c *i2c = &s3c24xx_i2c;

 756        struct resource *res;

 757        int ret;

 758

 759        /* find the clock and enable it */

 760

 761        i2c->dev = &pdev->dev;

 762        i2c->clk = clk_get(&pdev->dev, "i2c");

 763        if (IS_ERR(i2c->clk)) {

 764                dev_err(&pdev->dev, "cannot get clock/n");

 765                ret = -ENOENT;

 766                goto err_noclk;

 767        }

 768

 769        dev_dbg(&pdev->dev, "clock source %p/n", i2c->clk);

 770

 771        clk_enable(i2c->clk);

 772

 773        /* map the registers */

 774

 775        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);

 776        if (res == NULL) {

 777                dev_err(&pdev->dev, "cannot find IO resource/n");

 778                ret = -ENOENT;

 779                goto err_clk;

 780        }

 781

 782        i2c->ioarea = request_mem_region(res->start, (res->end-res->start)+1,

 783                                         pdev->name);

 784

 785        if (i2c->ioarea == NULL) {

 786                dev_err(&pdev->dev, "cannot request IO/n");

 787                ret = -ENXIO;

 788                goto err_clk;

 789        }

 790

 791        i2c->regs = ioremap(res->start, (res->end-res->start)+1);

 792

 793        if (i2c->regs == NULL) {

 794                dev_err(&pdev->dev, "cannot map IO/n");

 795                ret = -ENXIO;

 796                goto err_ioarea;

 797        }

 798

 799        dev_dbg(&pdev->dev, "registers %p (%p, %p)/n", i2c->regs, i2c->ioarea, res);

 800

 801        /* setup info block for the i2c core */

 802

 803        i2c->adap.algo_data = i2c;

 804        i2c->adap.dev.parent = &pdev->dev;

 805

 806        /* initialise the i2c controller */

 807

 808        ret = s3c24xx_i2c_init(i2c);

 809        if (ret != 0)

 810                goto err_iomap;

 811

 812        /* find the IRQ for this unit (note, this relies on the init call to

 813         * ensure no current IRQs pending 

 814         */

 815

 816        res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);

 817        if (res == NULL) {

 818                dev_err(&pdev->dev, "cannot find IRQ/n");

 819                ret = -ENOENT;

 820                goto err_iomap;

 821        }

 822

 823        ret = request_irq(res->start, s3c24xx_i2c_irq, IRQF_DISABLED,

 824                          pdev->name, i2c);

 825

 826        if (ret != 0) {

 827                dev_err(&pdev->dev, "cannot claim IRQ/n");

 828                goto err_iomap;

 829        }

 830

 831        i2c->irq = res;

 832                

 833        dev_dbg(&pdev->dev, "irq resource %p (%lu)/n", res,

 834                (unsigned long)res->start);

 835

 836        ret = i2c_add_adapter(&i2c->adap);

 837        if (ret < 0) {

 838                dev_err(&pdev->dev, "failed to add bus to i2c core/n");

 839                goto err_irq;

 840        }

 841

 842        platform_set_drvdata(pdev, i2c);

 843

 844        dev_info(&pdev->dev, "%s: S3C I2C adapter/n", i2c->adap.dev.bus_id);

 845        return 0;

 846

 847 err_irq:

 848        free_irq(i2c->irq->start, i2c);

 849

 850 err_iomap:

 851        iounmap(i2c->regs);

 852

 853 err_ioarea:

 854        release_resource(i2c->ioarea);

 855        kfree(i2c->ioarea);

 856

 857 err_clk:

 858        clk_disable(i2c->clk);

 859        clk_put(i2c->clk);

 860

 861 err_noclk:

 862        return ret;

 863}

当进入probe函数后,需要获取设备的资源信息,常用获取资源的函数主要是:

struct resource * platform_get_resource(struct platform_device *dev, unsigned int type, unsigned int num);

根据参数type所指定类型,例如IORESOURCE_MEM,来获取指定的资源。

struct int platform_get_irq(struct platform_device *dev, unsigned int num);

获取资源中的中断号。

struct resource * platform_get_resource_byname(struct platform_device *dev, unsigned int type, char *name);

根据参数name所指定的名称,来获取指定的资源。

int platform_get_irq_byname(struct platform_device *dev, char *name);

根据参数name所指定的名称,来获取资源中的中断号。

此probe函数获取物理IO空间,通过request_mem_region和ioremap等操作物理地址转换成内核中的虚拟地址,初始化 I2C控制器,通过platform_get_irq或platform_get_resource得到设备的中断号以后,就可以调用 request_irq函数来向系统注册中断,并将此I2C控制器添加到系统中。

8.6    操作设备

进行了platform_device_register 和platform_driver_register后,驱动的相应信息就出现在sys目录的相应文件夹下,然后,我们该如何调用设备呢??怎么对设备进行打开读写等操作呢???

Platform总线只是为了方便管理挂接在CPU总线上的设备,与用户空间的交互,如读写还是需要利用file_operations。当然如果此platform设备无需和用户空间交互,则无需file_operations实例。

对于I2C总线来说,其file_operations如下:

#linux+v2.6.25/drivers/i2c/i2c-core.c#L461

 478static const struct file_operations i2cdev_fops = {

 479        .owner          = THIS_MODULE,

 480        .llseek         = no_llseek,

 481        .read           = i2cdev_read,

 482        .write          = i2cdev_write,

 483        .ioctl          = i2cdev_ioctl,

 484        .open           = i2cdev_open,

 485        .release        = i2cdev_release,

 486};

其和platform bus的区别在于,platform bus提供机制访问I2C 控制器本身的资源,而I2C总线提供访问I2C 控制器上挂接的I2C设备的机制。

http://blog.csdn.net/zhengmeifu/article/details/6124558