【XSY3154】入门多项式 高斯消元

时间:2022-05-21 13:22:55

题目大意

  给你一个 \(n\times n\)的矩阵 \(A\),求次数最小且最高次项为 \(1\) 的多项式 \(F(x)\),满足 \(F(A)=0\)。

  所有操作都对 \(p\) 取模。

  \(n\leq 70,n<p\leq 998244353\)

题解

  显然特征多项式满足条件,但不一定是最优的。

  设答案为 \(F(x)=\sum_{i\geq 0}f_ix^i\)。

  那么

\[\begin{cases}
f_0{(A^0)}_{1,1}+f_1{(A^1)}_{1,1}+\cdots+f_n{(A^n)}_{1,1}&=0\\
f_0{(A^0)}_{1,2}+f_1{(A^1)}_{1,2}+\cdots+f_n{(A^n)}_{1,2}&=0\\
\vdots\\
f_0{(A^0)}_{n,n}+f_1{(A^1)}_{n,n}+\cdots+f_n{(A^n)}_{n,n}&=0
\end{cases}
\]

  这就是一个方程组,可以通过高斯消元来求解。

  观察高斯消元的过程。

  如果在消第 \(i\) 列的时候找不到主元,就说明这个矩阵的前 \(i\) 列不满秩,那么就可以钦定 \(f_{i-1}=1\),从而得到一组解。

  否则前 \(i\) 列是满秩的,唯一可能的解为 \(f_0=f_1=\ldots=f_{i-1}=0\)

  时间复杂度:\(O(n^4)\)

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=80;
int n;
ll p;
ll fp(ll a,ll b)
{
ll s=1;
for(;b;b>>=1,a=a*a%p)
if(b&1)
s=s*a%p;
return s;
}
struct mat
{
ll a[N][N];
mat()
{
memset(a,0,sizeof a);
}
ll *operator [](int x)
{
return a[x];
}
};
mat operator *(mat a,mat b)
{
mat c;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
__int128 s=0;
for(int k=1;k<=n;k++)
s+=(ll)a[i][k]*b[k][j];
c[i][j]=s%p;
}
return c;
}
mat a[N];
ll ans[N];
ll c[N*N][N];
int m;
void gao(int x)
{
ans[x]=1;
for(int i=1;i<x;i++)
ans[i]=(-c[i][x]*fp(c[i][i],p-2)%p+p)%p;
printf("%d\n",x-1);
for(int i=1;i<=x;i++)
printf("%lld ",ans[i]);
}
void gao()
{
for(int i=1;i<=n+1;i++)
{
int flag=0;
for(int j=i;j<=m;j++)
if(c[j][i])
{
flag=j;
break;
}
if(!flag)
{
gao(i);
return;
}
if(flag!=i)
{
for(int k=i;k<=n+1;k++)
swap(c[i][k],c[flag][k]);
}
ll inv=fp(c[i][i],p-2);
for(int j=1;j<=m;j++)
if(j!=i&&c[j][i])
{
ll v=c[j][i]*inv%p;
for(int k=i;k<=n+1;k++)
c[j][k]=(c[j][k]-v*c[i][k])%p;
}
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
#endif
scanf("%d%lld",&n,&p);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
scanf("%lld",&a[1][i][j]);
for(int i=1;i<=n;i++)
a[0][i][i]=1;
for(int i=2;i<=n;i++)
a[i]=a[i-1]*a[1];
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
m++;
for(int k=0;k<=n;k++)
c[m][k+1]=a[k][i][j];
}
gao();
return 0;
}