bzoj2115 [Wc2011] Xor——高斯消元 & 异或线性基

时间:2023-03-09 05:26:53
bzoj2115 [Wc2011] Xor——高斯消元 & 异或线性基

题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2115

异或两次同一段路径的权值,就相当于没有走这段路径;

由此可以得到启发,对于不同的走法,也许只需要找出一些东西,就可以把所有的走法用它们来异或表示出来;

再关注图上的环路,因为从 1 到 n 的不同路径也可以看作是经由 1 和 n 连接的环路,路径上也可能有环路;

发现对于环路的不同走法,就是把路与环的权值异或求最优值,重叠的部分异或了两次相当于不走;

于是问题转化为找出图上的所有环(可以用 dfs ),把它们的权值异或起来得到最优解;

这里又有高斯消元求解线性基的套路,总之上就是了。

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
int const maxn=5e4+,maxm=1e5+;
int n,m,head[maxn],ct,cir;
ll ans,v[maxm<<],dis[maxn];//maxm<<1
bool vis[maxn];
struct N{
int to,next; ll w;
N(int t=,int n=,ll w=):to(t),next(n),w(w) {}
}edge[maxm<<];
void add(int x,int y,ll z){edge[++ct]=N(y,head[x],z); head[x]=ct;}
void dfs(int x)
{
vis[x]=;
for(int i=head[x],u;i;i=edge[i].next)
{
if(!vis[u=edge[i].to])
{
dis[u]=(dis[x]^edge[i].w);
dfs(u);
}
else v[++cir]=(dis[u]^dis[x]^edge[i].w);
}
}
void gauss()
{
int nw=;
for(int i=;i>=;i--)
{
// int j=++nw;//这样写会造成 nw 空加!
int j=nw+;
while(j<=cir&&(v[j]&(1ll<<i))==)j++;
if(j==cir+)continue;
nw++;
swap(v[nw],v[j]);
for(int j=;j<=cir;j++)
if(j!=nw&&(v[j]&(1ll<<i)))v[j]^=v[nw];
}
}
int main()
{
scanf("%d%d",&n,&m);
int x,y; ll z;
for(int i=;i<=m;i++)
{
scanf("%d%d%lld",&x,&y,&z);
add(x,y,z); add(y,x,z);
}
dfs(); gauss();
ans=dis[n];
for(int i=;i<=cir;i++)
ans=max(ans,ans^v[i]);
printf("%lld",ans);
return ;
}