
上一篇已经熟悉了Observable的基本用法,但是如果仅仅只是“生产-消费”的模型,这就体现不出优势了,java有100种办法可以玩这个:)
一、更简单的多线程
正常情况下,生产者与消费者都在同一个线程里处理,参考下面的代码:
final long start = System.currentTimeMillis(); Observable<String> fileSender = Observable.create(emitter -> {
for (int i = 1; i < 6; i++) {
Thread.sleep(1000);
String temp = "thread:" + Thread.currentThread().getId() + " , file " + i + " 的内容";
System.out.println(temp);
emitter.onNext(temp);
}
emitter.onComplete();
}); Observer<String> fileHander = new Observer<String>() {
@Override
public void onSubscribe(@NonNull Disposable d) {
System.out.println("准备处理文件...");
} @Override
public void onNext(@NonNull String s) {
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("thread:" + Thread.currentThread().getId() + " , [" + s + "] 已处理!");
} @Override
public void onError(@NonNull Throwable e) {
System.out.println("师傅,有妖怪!");
} @Override
public void onComplete() {
System.out.println("总算完事儿,累屎大爷了!");
long end = System.currentTimeMillis();
System.out.println("耗时:" + (end - start));
}
}; fileSender.subscribe(fileHander); Thread.sleep(60000);
假设生产者在读取一堆文件,然后发给消费者处理,通常情况下,这类涉及IO的操作都是很耗时的,我们用sleep(1000)来模拟。
从输出结果上看,生产者与消费者的thread id相同,耗时约为10s。
fileSender.subscribe(fileHander);
如果上面这行,换成
fileSender.subscribeOn(Schedulers.io()) //生产者处理时,放在io线程中
.observeOn(Schedulers.newThread()) //消费者处理时,用新线程
.subscribe(fileHander);

可以看到二个线程id不一样,说明分别在不同的线程里,而且总耗时明显缩短了。
二、更平滑的链式调用
假设我们有一个经典的在线电商场景:用户提交订单后,马上跳到支付页面付款。传统写法,通常是中规中矩的封装2个方法,依次调用。用rxjava后,可以写得更流畅,先做点准备工作:
先定义二个服务接口:订单服务(OrderService)以及支付服务(PayService)
OrderService.java
public interface OrderService {
Observable<CreateOrderResponse> createOrder(CreateOrderRequest request) throws Exception;
}
PayService.java
public interface PayService {
Observable<PayResponse> payOrder(PayRequest request) throws Exception;
}
然后来二个实现:
OrderServiceImpl
public class OrderServiceImpl implements OrderService { @Override
public Observable<CreateOrderResponse> createOrder(CreateOrderRequest request) throws InterruptedException {
System.out.println("threadId:" + Thread.currentThread().getId() + ", 订单创建中:" + request.toString());
CreateOrderResponse response = new CreateOrderResponse();
response.setOrderNo(UUID.randomUUID().toString().replace("-", ""));
response.setOrderStatus("NEW");
response.setOrderAmount(request.getOrderAmount());
response.setOrderDesc(request.getOrderDesc());
return Observable.create(emitter -> emitter.onNext(response));
}
}
PayServiceImpl
public class PayServiceImpl implements PayService { @Override
public Observable<PayResponse> payOrder(PayRequest request) throws InterruptedException {
System.out.println("threadId:" + Thread.currentThread().getId() + ", 正在请求支付:" + request);
PayResponse response = new PayResponse();
response.setSuccess(true);
response.setOrderNo(request.getOrderNo());
response.setTradeNo(UUID.randomUUID().toString().replace("-", ""));
return Observable.create(emitter -> emitter.onNext(response));
}
}
然后测试一把:
@Test
public void test1() throws Exception {
OrderService orderService = new OrderServiceImpl();
PayService payService = new PayServiceImpl();
orderService.createOrder(new CreateOrderRequest("iphone X", new BigDecimal(8888.00))) //创建订单
//将"创建订单的Response" 转换成 "支付订单的Response"
.flatMap((Function<CreateOrderResponse, ObservableSource<PayResponse>>) response -> payService.payOrder(new PayRequest(response.getOrderNo(), response.getOrderAmount())))
//支付完成的处理
.subscribe(response -> System.out.println("threadId:" + Thread.currentThread().getId() + ", 支付完成"));
Thread.sleep(1000);//等待执行完毕
}
链式的写法,更符合阅读习惯,注:flatMap这个操作,通俗点讲,就是将一种口径的子弹,转换成另一种口径的子弹,然后再继续发射。
输出:
threadId:1, 订单创建中:CreateOrderRequest(orderDesc=iphone X, orderAmount=8888)
threadId:1, 正在请求支付:PayRequest(orderNo=81419b0580d547acbb53955978ace6b8, paymentAmount=8888)
threadId:1, 支付完成
可以看到,默认情况下,创建订单/支付订单在同一个线程中,结合前面学到的知识,也可以将它们划分到不同的线程里:(虽然就这个场景而言,这样做的意义不大,因为支付前,肯定要等订单先提交,这个没办法并发处理,这里只是意思一下,可以这样做而已)
@Test
public void test2() throws Exception {
OrderService orderService = new OrderServiceImpl();
PayService payService = new PayServiceImpl();
orderService.createOrder(new CreateOrderRequest("iphone X", new BigDecimal(8888.00)))
.subscribeOn(Schedulers.newThread()) //(生产者)创建订单时,使用新线程
.observeOn(Schedulers.newThread()) //(消费者1)接收订单时,使用新线程
.flatMap((Function<CreateOrderResponse, ObservableSource<PayResponse>>) response -> payService.payOrder(new PayRequest(response.getOrderNo(), response.getOrderAmount())))
.observeOn(Schedulers.newThread()) //(消费者2)接收支付结果时,使用新线程
.subscribe(response -> System.out.println("threadId:" + Thread.currentThread().getId() + ", 支付完成"));
Thread.sleep(1000);//等待执行完毕
}
输出:
threadId:1, 订单创建中:CreateOrderRequest(orderDesc=iphone X, orderAmount=8888)
threadId:13, 正在请求支付:PayRequest(orderNo=d5ff7890f22f486bb1bf8aa8e4f0a3bf, paymentAmount=8888)
threadId:14, 支付完成
从threadId看,已经是不同的线程了。
上面的代码,都没考虑到出错的情况,如果支付时出异常了,rxjava如何处理呢?
先改下支付的实现,人为抛个异常:
public class PayServiceImpl implements PayService { @Override
public Observable<PayResponse> payOrder(PayRequest request) throws Exception {
throw new Exception("支付失败!");
}
}
rxjava里有一个重载版本,见: io.reactivex.Observable
@CheckReturnValue
@SchedulerSupport("none")
public final Disposable subscribe(Consumer<? super T> onNext, Consumer<? super Throwable> onError) {
return this.subscribe(onNext, onError, Functions.EMPTY_ACTION, Functions.emptyConsumer());
}
使用这个版本即可:
@Test
public void test3() throws Exception {
OrderService orderService = new OrderServiceImpl();
PayService payService = new PayServiceImpl();
orderService.createOrder(new CreateOrderRequest("iphone X", new BigDecimal(8888.00)))
.flatMap((Function<CreateOrderResponse, ObservableSource<PayResponse>>) response -> payService.payOrder(new PayRequest(response.getOrderNo(), response.getOrderAmount())))
.subscribe(response -> System.out.println("threadId:" + Thread.currentThread().getId() + ", 支付完成"),
//异常处理
err -> System.out.println("支付出错啦:" + err.getMessage()));
Thread.sleep(1000);//等待执行完毕
}
输出:
threadId:1, 订单创建中:CreateOrderRequest(orderDesc=iphone X, orderAmount=8888)
支付出错啦:支付失败!
如果想在订单创建完后,先做些处理,再进行支付,可以这么写:
@Test
public void test4() throws Exception {
OrderService orderService = new OrderServiceImpl();
PayService payService = new PayServiceImpl();
orderService.createOrder(new CreateOrderRequest("iphone X", new BigDecimal(8888.00)))
//订单创建完成后的处理
.doOnNext(response -> System.out.println("订单创建完成:" + response))
.flatMap((Function<CreateOrderResponse, ObservableSource<PayResponse>>) response -> payService.payOrder(new PayRequest(response.getOrderNo(), response.getOrderAmount())))
.subscribe(response -> System.out.println("threadId:" + Thread.currentThread().getId() + ", 支付完成"),
err -> System.out.println("支付出错啦:" + err.getMessage()));
Thread.sleep(1000);//等待执行完毕
}
输出:
threadId:1, 订单创建中:CreateOrderRequest(orderDesc=iphone X, orderAmount=8888)
订单创建完成:CreateOrderResponse(orderNo=8c194b1d07c044a8af3771159e1bb2bf, orderDesc=iphone X, orderAmount=8888, orderStatus=NEW)
支付出错啦:支付失败!
最后再说下flatMap与concatMap,看下面二个示例就明白差异:
@Test
public void flatMapTest() throws InterruptedException {
Observable.create((ObservableOnSubscribe<Integer>) emitter -> {
for (int i = 0; i < 10; i++) {
emitter.onNext(i);
}
}).flatMap((Function<Integer, ObservableSource<String>>) integer -> Observable.fromArray(integer + "")
.delay(10, TimeUnit.MILLISECONDS)
)
.subscribe(s -> System.out.print(s + " "));
Thread.sleep(5000);
}
输出:0 1 5 9 2 3 7 4 6 8
@Test
public void concatMapTest() throws InterruptedException {
Observable.create((ObservableOnSubscribe<Integer>) emitter -> {
for (int i = 0; i < 10; i++) {
emitter.onNext(i);
}
}).concatMap((Function<Integer, ObservableSource<String>>) integer -> Observable.fromArray(integer + "")
.delay(10, TimeUnit.MILLISECONDS)
)
.subscribe(s -> System.out.print(s + " "));
Thread.sleep(5000);
}
输出:0 1 2 3 4 5 6 7 8 9
结论:flatMap不保证顺序,concatMap能保证顺序