
You have matrix a of size n × n. Let's number the rows of the matrix from 1 to n from top to bottom, let's number the columns from 1 ton from left to right. Let's use aij to represent the element on the intersection of the i-th row and the j-th column.
Matrix a meets the following two conditions:
- for any numbers i, j (1 ≤ i, j ≤ n) the following inequality holds: aij ≥ 0;
-
.
Matrix b is strictly positive, if for any numbers i, j (1 ≤ i, j ≤ n) the inequality bij > 0 holds. You task is to determine if there is such integer k ≥ 1, that matrix ak is strictly positive.
The first line contains integer n (2 ≤ n ≤ 2000) — the number of rows and columns in matrix a.
The next n lines contain the description of the rows of matrix a. The i-th line contains n non-negative integers ai1, ai2, ..., ain (0 ≤ aij ≤ 50). It is guaranteed that .
If there is a positive integer k ≥ 1, such that matrix ak is strictly positive, print "YES" (without the quotes). Otherwise, print "NO" (without the quotes).
2
1 0
0 1
NO
5
4 5 6 1 2
1 2 3 4 5
6 4 1 2 4
1 1 1 1 1
4 4 4 4 4
YES
题意: 矩阵matrix[n][n], 对角线上元素不全为0, 其他元素的值大于等于0. 问是否存在k 使得 矩阵的k次幂之后 元素的值全部大于0.
设 A = B2 , B 为一邻接矩阵, 则A[i][j] 的实际意义为 从i到j 经过一个点(不包含i, j)的路径的个数。。。对于k次幂就是经过k-1个点的路径的个数了。
要使 A[i][j] 大于0 ,(有向图) i 到j必须连通。。 A[j][i] > 0 && A[i][j] < 0 ,则i, j之间必能形成回路。
可以理解为 从任意点开始都可以遍历整个有向图。
建两个图(正向 反向),分别跑dfs。。判断一下即可。
#include <bits/stdc++.h>
using namespace std;
vector<int>G1[];
vector<int>G2[];
int c1, c2;
bool vis[];
void dfs1(int r)
{
c1++;
vis[r] = true;
for (int i = ; i < G1[r].size(); i++)
{
if (!vis[G1[r][i]])
dfs1(G1[r][i]);
}
}
void dfs2(int r)
{
c2++;
vis[r] = true;
for (int i = ; i < G2[r].size(); i++)
{
if (!vis[G2[r][i]])
dfs2(G2[r][i]);
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
#endif
int n;
while (~scanf ("%d", &n))
{
for (int i = ; i <= n; i++)
{
G1[i].clear();
G2[i].clear();
}
for (int i = ; i < n; i++)
{
for (int j = ; j < n; j++)
{
int x;
scanf ("%d", &x);
if (i != j && x)
{
G1[i+].push_back(j+);
G2[j+].push_back(i+);
}
}
}
c1 = c2 = ;
memset(vis, false, sizeof(vis));
dfs1();
memset(vis, false, sizeof(vis));
dfs2();
printf("%s\n", (c1 == n && c2 == n) ? "YES" : "NO");
}
return ;
}