![P3313 [SDOI2014]旅行——树链剖分+线段树(动态开点?) P3313 [SDOI2014]旅行——树链剖分+线段树(动态开点?)](https://image.shishitao.com:8440/aHR0cHM6Ly9ia3FzaW1nLmlrYWZhbi5jb20vdXBsb2FkL2NoYXRncHQtcy5wbmc%2FIQ%3D%3D.png?!?w=700&webp=1)
一棵树,其中的点分类,点有权值,在一条链上找到一类点中的最大值或总和;
树链剖分把树变成链;
把每个宗教单开一个线段树,维护区间总和和最大值;
宗教很多,需要动态开点;
树链剖分:
void dfs1(int x,int fa)
{
siz[x]=;
father[x]=fa;
dep[x]=dep[fa]+;
for(int p=last[x];p;p=pre[p])
{
int v=other[p];
if(v==fa) continue;
dfs1(v,x);
siz[x]+=siz[v];
if(siz[v]>siz[son[x]]) son[x]=v;
}
} void dfs2(int x,int tp)
{
id[x]=++cnt;
top[x]=tp;
if(!son[x]) return ;
dfs2(son[x],tp);
for(int p=last[x];p;p=pre[p])
{
int v=other[p];
if(v==father[x]||v==son[x]) continue;
dfs2(v,v);
}
} dfs1(,);
dfs2(,);
然后我们将每个点扔进所属宗教的线段树里;
设c[i]为i所属宗教,root[i]为线段树的总结点(根节点),注意这里用的节点为树链剖分后的新id
线段树不必记录自己的区间大小,节点是根据当前插入节点的新id决定的,不必将所有节点都开全,因为区间里的节点不都属于此线段树;
void build(int &rt,int l,int r,int w,int pos)
{
if(!rt) rt=++num;
//t[rt].l=l;t[rt].r=r;
t[rt].ma=max(t[rt].ma,w);
t[rt].sum+=w;
if(l==r) return ;
int mid=(l+r)>>;
if(pos<=mid) build(t[rt].l,l,mid,w,pos);
else build(t[rt].r,mid+,r,w,pos);
} for(int i=;i<=n;i++)
{
build(root[c[i]],,n,w[i],id[i]);
}
宗教会变,我们需要删除操作和插入操作;
删除时将他所在线段树中的节点删掉即可,插入即为建树操作;
点权值会变,我们只要把点删去,再将他作为一个新点插入即可;
求和操作:
正规树链剖分操作,将链上区间线段树求和即可,注意调用相关的线段树;
求最大值同上;
int query_tot(int rt,int lb,int rb,int l,int r)
{
if(r<lb||l>rb) return ;
if(r>=rb&&l<=lb) return t[rt].sum;
int mid=(lb+rb)>>;
return query_tot(t[rt].l,lb,mid,l,r)+query_tot(t[rt].r,mid+,rb,l,r);
} int tree_tot(int x,int y,int c)
{
int ans=;
while(top[x]!=top[y])
{
if(dep[top[x]]<dep[top[y]]) swap(x,y);
ans+=query_tot(root[c],,n,id[top[x]],id[x]);
x=father[top[x]];
}
if(dep[x]>dep[y]) swap(x,y);
ans+=query_tot(root[c],,n,id[x],id[y]);
return ans;
} int query_ma(int rt,int lb,int rb,int l,int r)
{
if(r<lb||l>rb) return ;
if(r>=rb&&l<=lb) return t[rt].ma;
int mid=(lb+rb)>>;
return max(query_ma(t[rt].l,lb,mid,l,r),query_ma(t[rt].r,mid+,rb,l,r));
} int tree_ma(int x,int y,int c)
{
int ans=;
while(top[x]!=top[y])
{
if(dep[top[x]]<dep[top[y]]) swap(x,y);
ans=max(ans,query_ma(root[c],,n,id[top[x]],id[x]));
x=father[top[x]];
}
if(dep[x]>dep[y]) swap(x,y);
ans=max(ans,query_ma(root[c],,n,id[x],id[y]));
return ans;
}
总代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=1e6+;
int pre[maxn*],last[maxn],other[maxn*],l;
int w[maxn],c[maxn]; struct node_sec
{
int l,r,ma,sum;
}t[maxn*]; void add(int x,int y)
{
l++;
pre[l]=last[x];
last[x]=l;
other[l]=y;
} int n,m;
int father[maxn];
int siz[maxn],son[maxn];
int dep[maxn];
void dfs1(int x,int fa)
{
siz[x]=;
father[x]=fa;
dep[x]=dep[fa]+;
for(int p=last[x];p;p=pre[p])
{
int v=other[p];
if(v==fa) continue;
dfs1(v,x);
siz[x]+=siz[v];
if(siz[v]>siz[son[x]]) son[x]=v;
}
}
int cnt,id[maxn],top[maxn]; void dfs2(int x,int tp)
{
id[x]=++cnt;
top[x]=tp;
if(!son[x]) return ;
dfs2(son[x],tp);
for(int p=last[x];p;p=pre[p])
{
int v=other[p];
if(v==father[x]||v==son[x]) continue;
dfs2(v,v);
}
}
int root[maxn];
int num;
void build(int &rt,int l,int r,int w,int pos)
{
if(!rt) rt=++num;
//t[rt].l=l;t[rt].r=r;
t[rt].ma=max(t[rt].ma,w);
t[rt].sum+=w;
if(l==r) return ;
int mid=(l+r)>>;
if(pos<=mid) build(t[rt].l,l,mid,w,pos);
else build(t[rt].r,mid+,r,w,pos);
}
char s[]; void tree_remove(int &rt,int l,int r,int pos)
{
if(l==r)
{
t[rt].ma=;t[rt].sum=;
return ;
}
int mid=(l+r)>>;
if(pos<=mid) tree_remove(t[rt].l,l,mid,pos);
else tree_remove(t[rt].r,mid+,r,pos);
t[rt].ma=max(t[t[rt].l].ma,t[t[rt].r].ma);
t[rt].sum=t[t[rt].l].sum+t[t[rt].r].sum;
} int query_tot(int rt,int lb,int rb,int l,int r)
{
if(r<lb||l>rb) return ;
if(r>=rb&&l<=lb) return t[rt].sum;
int mid=(lb+rb)>>;
return query_tot(t[rt].l,lb,mid,l,r)+query_tot(t[rt].r,mid+,rb,l,r);
} int tree_tot(int x,int y,int c)
{
int ans=;
while(top[x]!=top[y])
{
if(dep[top[x]]<dep[top[y]]) swap(x,y);
ans+=query_tot(root[c],,n,id[top[x]],id[x]);
x=father[top[x]];
}
if(dep[x]>dep[y]) swap(x,y);
ans+=query_tot(root[c],,n,id[x],id[y]);
return ans;
} int query_ma(int rt,int lb,int rb,int l,int r)
{
if(r<lb||l>rb) return ;
if(r>=rb&&l<=lb) return t[rt].ma;
int mid=(lb+rb)>>;
return max(query_ma(t[rt].l,lb,mid,l,r),query_ma(t[rt].r,mid+,rb,l,r));
} int tree_ma(int x,int y,int c)
{
int ans=;
while(top[x]!=top[y])
{
if(dep[top[x]]<dep[top[y]]) swap(x,y);
ans=max(ans,query_ma(root[c],,n,id[top[x]],id[x]));
x=father[top[x]];
}
if(dep[x]>dep[y]) swap(x,y);
ans=max(ans,query_ma(root[c],,n,id[x],id[y]));
return ans;
} int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
{
scanf("%d%d",&w[i],&c[i]);
}
for(int i=;i<n;i++)
{
int x,y;
scanf("%d%d",&x,&y);
add(x,y);add(y,x);
}
dfs1(,);
dfs2(,);
for(int i=;i<=n;i++)
{
build(root[c[i]],,n,w[i],id[i]);
}
for(int i=;i<=m;i++)
{
int x,y;
scanf("%s",s);
if(s[]=='C')
{
scanf("%d%d",&x,&y);
tree_remove(root[c[x]],,n,id[x]);
build(root[y],,n,w[x],id[x]);
c[x]=y;
continue;
}
else if(s[]=='W')
{
scanf("%d%d",&x,&y);
tree_remove(root[c[x]],,n,id[x]);
build(root[c[x]],,n,y,id[x]);
w[x]=y;
continue;
}
else if(s[]=='S')
{
scanf("%d%d",&x,&y);
printf("%d\n",tree_tot(x,y,c[x]));
}
else
{
scanf("%d%d",&x,&y);
printf("%d\n",tree_ma(x,y,c[x]));
}
} return ;
}