![[BZOJ 3144] [Hnoi2013] 切糕 【最小割】 [BZOJ 3144] [Hnoi2013] 切糕 【最小割】](https://image.shishitao.com:8440/aHR0cHM6Ly9ia3FzaW1nLmlrYWZhbi5jb20vdXBsb2FkL2NoYXRncHQtcy5wbmc%2FIQ%3D%3D.png?!?w=700)
题目链接:BZOJ - 3144
题目分析
题意:在 P * Q 的方格上填数字,可以填 [1, R] 。
在 (x, y) 上填 z 会有 V[x][y][z] 的代价。限制:相邻两个格子填的数字的差的绝对值不能超过 D 。
求一个合法的最小总代价。
这道题是一个最小割模型,直接说建图吧。
建图:每个点 (x, y) 拆成 R 个点,(x, y, z) 代表 (x, y) 填 z。
然后从 S 向 (*, *, 1) 连 INF ,从 (*, *, R) 向 T 连 INF 。
然后对于 (i, j, k) ,向 (i, j, k + 1) 连 V[i][j][k] 的边。
对于与 (i, j) 相邻的 (i', j') ,从 (i, j, k) 向 (i', j', k - D) 连INF。
这样,割掉 (i, j, k) -> (i, j, k + 1) 的边,就是在 (i, j) 填了 k。
如果 (i, j) 填了 k ,与 (i, j) 相邻的 (i', j') 就只能填比 k - D 大的数字。
代码
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm> using namespace std; const int MaxN = 40, MaxNode = 65000 + 15, INF = 999999999, Dx[5] = {0, 0, 1, -1}, Dy[5] = {1, -1, 0, 0}; int P, Q, R, D, S, T, Tot, MaxFlow;
int Idx[MaxN][MaxN][MaxN], V[MaxN][MaxN][MaxN], Num[MaxNode], d[MaxNode]; struct Edge
{
int v, w;
Edge *Next, *Other;
} E[MaxNode * 6], *Pi = E, *Point[MaxNode], *Last[MaxNode]; inline void AddEdge(int x, int y, int z)
{
Edge *Q = ++Pi; ++Pi;
Pi -> v = y; Pi -> w = z;
Pi -> Next = Point[x]; Point[x] = Pi; Pi -> Other = Q;
Q -> v = x; Q -> w = 0;
Q -> Next = Point[y]; Point[y] = Q; Q -> Other = Pi;
} inline int gmin(int a, int b) {return a < b ? a : b;} int DFS(int Now, int Flow)
{
if (Now == T) return Flow;
int ret = 0;
for (Edge *j = Last[Now]; j; j = j -> Next)
if (j -> w && d[Now] == d[j -> v] + 1)
{
Last[Now] = j;
int p = DFS(j -> v, gmin(j -> w, Flow - ret));
ret += p; j -> w -= p; j -> Other -> w += p;
if (ret == Flow) return ret;
}
if (d[S] >= Tot) return ret;
if (--Num[d[Now]] == 0) d[S] = Tot;
++Num[++d[Now]];
Last[Now] = Point[Now];
return ret;
} inline bool Inside(int x, int y)
{
if (x < 1 || x > P) return false;
if (y < 1 || y > Q) return false;
return true;
} int main()
{
scanf("%d%d%d%d", &P, &Q, &R, &D);
for (int i = 1; i <= R; ++i)
for (int j = 1; j <= P; ++j)
for (int k = 1; k <= Q; ++k)
scanf("%d", &V[j][k][i]);
for (int i = 1; i <= P; ++i)
for (int j = 1; j <= Q; ++j)
for (int k = 1; k <= R; ++k)
Idx[i][j][k] = (k - 1) * (P * Q) + (i - 1) * Q + j;
Tot = Idx[P][Q][R]; S = ++Tot; T = ++Tot;
for (int i = 1; i <= P; ++i)
for (int j = 1; j <= Q; ++j)
{
Idx[i][j][1] = S;
Idx[i][j][R + 1] = T;
for (int k = 1; k <= R; ++k)
{
AddEdge(Idx[i][j][k], Idx[i][j][k + 1], V[i][j][k]);
if (k > D + 1)
{
int x, y;
for (int f = 0; f < 4; ++f)
{
x = i + Dx[f]; y = j + Dy[f];
if (!Inside(x, y)) continue;
AddEdge(Idx[i][j][k], Idx[x][y][k - D], INF);
}
}
}
}
MaxFlow = 0;
memset(d, 0, sizeof(d));
memset(Num, 0, sizeof(Num)); Num[0] = Tot;
for (int i = 1; i <= Tot; ++i) Last[i] = Point[i];
while (d[S] < Tot) MaxFlow += DFS(S, INF);
printf("%d\n", MaxFlow);
return 0;
}