![【bzoj1041】[HAOI2008]圆上的整点 数论 【bzoj1041】[HAOI2008]圆上的整点 数论](https://image.shishitao.com:8440/aHR0cHM6Ly9ia3FzaW1nLmlrYWZhbi5jb20vdXBsb2FkL2NoYXRncHQtcy5wbmc%2FIQ%3D%3D.png?!?w=700&webp=1)
题目描述
求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数。
输入
只有一个正整数n,n<=2000 000 000
输出
整点个数
样例输入
4
样例输出
4
题解
数论
#include <cmath>
#include <cstdio>
typedef long long ll;
ll judge(ll k)
{
ll t = (ll)sqrt(k);
return t * t == k ? t : 0;
}
ll gcd(ll a , ll b)
{
return b ? gcd(b , a % b) : a;
}
ll calc(ll k)
{
ll i , t , ans = 0;
for(i = 1 ; i * i <= k / 2 ; i ++ )
{
t = judge(k - i * i);
if(t && gcd(i , t) == 1) ans ++ ;
}
return ans;
}
int main()
{
ll n , i , ans = 0;
scanf("%lld" , &n);
for(i = 1 ; i * i <= 2 * n ; i ++ )
{
if(2 * n % i == 0)
{
ans += calc(i);
if(i * i != 2 * n) ans += calc(2 * n / i);
}
}
printf("%lld\n" , ans * 4);
return 0;
}