spark[源码]-DAG调度器源码分析[二]

时间:2021-02-20 23:23:03

前言

spark[源码]-DAG调度器源码分析[二]

根据图片上的结构划分我们不难发现当rdd触发action操作之后,会调用SparkContext的runJob方法,最后调用的DAGScheduler.handleJobSubmitted方法完成整个job的提交。然后DAGScheduler根据RDD的lineage进行Stage划分,再生成TaskSet,由TaskScheduler向集群申请资源,最终在Woker节点的Executor进程中执行Task。

这个地方再次强调一下宽依赖和窄依赖的概念,因为这个是决定stage划分的关键所在。

窄依赖指的是:每个parent RDD 的 partition 最多被 child RDD的一个partition使用
宽依赖指的是:每个parent RDD 的 partition 被多个 child RDD的partition使用 窄依赖每个child RDD 的partition的生成操作都是可以并行的,而宽依赖则需要所有的parent partition shuffle结果得到后再进行。

接下来,Spark就可以提交这些任务了。但是,如何对这些任务进行调度和资源分配呢?如何通知worker去执行这些任务呢?接下来,我们会一一讲解。

回忆sparkcontext

是否还记得在sparkcontext初始化的时候做的操作?

spark[源码]-DAG调度器源码分析[二]

这个地方初始化了TaskScheduler,schedulerBackend,和DAGScheduler,请记住这三大关键点,还有就是为什么要先创建TaskScheduler呢?因为DAGScheduler接受的参数之一就是TaskScheduler啊,回答的没错的,是这么回事,但是具体的呢?我这里只先截图遗留一下吧。

spark[源码]-DAG调度器源码分析[二]

根据源码可以看到了吧,原来在DAG一系列的操作中,最后需要调用taskScheduler的submitTasks 来提交taskSet任务集的。

rdd触发action操作

请时刻记住spark是很懒的,如果一个rdd里面没有action操作,你即使做在做的操作,但是没有action操作,对不起哥们就是不干活。lazy加载用的出神入化。

调用栈如下:

    • rdd.count
      • SparkContext.runJob
        • DAGScheduler.runJob
          • DAGScheduler.submitJob
            • DAGSchedulerEventProcessLoop.doOnReceive
              • DAGScheduler.handleJobSubmitted

RDD的一些action操作都会触发SparkContext的runJob函数,如count()

def count(): Long = sc.runJob(this, Utils.getIteratorSize _).sum

通过count()这个函数我们可以发现,其调用了sparkContext中的runJob函数。

new DAGScheduler()

spark[源码]-DAG调度器源码分析[二]

这个地方做的是DAG的初始化,这里面有个比较重要的初始化参数。

在sparkContext创建DAG的时候。DAG初始化eventProcessLoop变量:
 private[scheduler] val eventProcessLoop = new DAGSchedulerEventProcessLoop(this)
  taskScheduler.setDAGScheduler(this)
 在1585行有个后台进程启动,eventProcessLoop.start(),这个地方注意一下,等遇到了我们在详细说。

sparkContext.runJob函数

当你去看SparkContext中的runJob函数的时候,你会发现很多个,让我们根据调用的方法一层一层来解析。

  /**
* Run a job on all partitions in an RDD and return the results in an array.
*/
def runJob[T, U: ClassTag](rdd: RDD[T], func: Iterator[T] => U): Array[U] = {
runJob(rdd, func, 0 until rdd.partitions.length)
}

这个调用是添加了rdd.partitions.length长度

  /**
* Run a job on a given set of partitions of an RDD, but take a function of type
* `Iterator[T] => U` instead of `(TaskContext, Iterator[T]) => U`.
*/
def runJob[T, U: ClassTag](
rdd: RDD[T],
func: Iterator[T] => U,
partitions: Seq[Int]): Array[U] = {
val cleanedFunc = clean(func)
runJob(rdd, (ctx: TaskContext, it: Iterator[T]) => cleanedFunc(it), partitions)
}

这个地方又填加了一个操作,就是清除闭包用的,这样可以也可做序列化了。

  /**
* Run a function on a given set of partitions in an RDD and return the results as an array.
*/
def runJob[T, U: ClassTag](
rdd: RDD[T],
func: (TaskContext, Iterator[T]) => U,
partitions: Seq[Int]): Array[U] = {
val results = new Array[U](partitions.size)
runJob[T, U](rdd, func, partitions, (index, res) => results(index) = res)
results
}

这个地方又添加了一个result变量,用于存在将来task执行后的返回结果。

spark[源码]-DAG调度器源码分析[二]

到了这个地方,runJob基本上就处理完了,开始了真正的DAG划分操作了。值得注意的是,可以重点关注一下rdd.doCheckpoint()这个方法,这个方法在优化的时候比较有用,可以将rdd缓存后,清除其缓存或者存储节点前的血统关系。

  private[spark] def doCheckpoint(): Unit = {
RDDOperationScope.withScope(sc, "checkpoint", allowNesting = false, ignoreParent = true) {
if (!doCheckpointCalled) {
doCheckpointCalled = true
if (checkpointData.isDefined) {
checkpointData.get.checkpoint()
} else {
dependencies.foreach(_.rdd.doCheckpoint())
}
}
}
}
时刻注意:如果RDD做了checkpoint了,那么它就将lineage中它的parents给切除了。所以你要做checkpoint的时候想好如何做,是否也要做起partent的checkpoint

dagScheduler.runJob

  def runJob[T, U](
rdd: RDD[T],
func: (TaskContext, Iterator[T]) => U,
partitions: Seq[Int],
callSite: CallSite,
resultHandler: (Int, U) => Unit,
properties: Properties): Unit = {
val start = System.nanoTime
val waiter = submitJob(rdd, func, partitions, callSite, resultHandler, properties)
waiter.awaitResult() match {
case JobSucceeded =>
logInfo("Job %d finished: %s, took %f s".format
(waiter.jobId, callSite.shortForm, (System.nanoTime - start) / 1e9))
case JobFailed(exception: Exception) =>
logInfo("Job %d failed: %s, took %f s".format
(waiter.jobId, callSite.shortForm, (System.nanoTime - start) / 1e9))
// SPARK-8644: Include user stack trace in exceptions coming from DAGScheduler.
val callerStackTrace = Thread.currentThread().getStackTrace.tail
exception.setStackTrace(exception.getStackTrace ++ callerStackTrace)
throw exception
}
}

这个函数主要是调用了submitJob函数

DAGScheduler.submitJob

  def submitJob[T, U](
rdd: RDD[T],
func: (TaskContext, Iterator[T]) => U,
partitions: Seq[Int],
callSite: CallSite,
resultHandler: (Int, U) => Unit,
properties: Properties): JobWaiter[U] = {
// Check to make sure we are not launching a task on a partition that does not exist.
//这个地方是检查一下需要运行partition的数量,因为不是每个rdd的partition都需要运行,比如frist()就只需要一个partition就可以了。
val maxPartitions = rdd.partitions.length
partitions.find(p => p >= maxPartitions || p < 0).foreach { p =>
throw new IllegalArgumentException(
"Attempting to access a non-existent partition: " + p + ". " +
"Total number of partitions: " + maxPartitions)
} val jobId = nextJobId.getAndIncrement()
if (partitions.size == 0) {
// Return immediately if the job is running 0 tasks
return new JobWaiter[U](this, jobId, 0, resultHandler)
} assert(partitions.size > 0)
val func2 = func.asInstanceOf[(TaskContext, Iterator[_]) => _]
val waiter = new JobWaiter(this, jobId, partitions.size, resultHandler)
eventProcessLoop.post(JobSubmitted(
jobId, rdd, func2, partitions.toArray, callSite, waiter,
SerializationUtils.clone(properties)))
waiter
}

1.检查出需要运行的partitions。

2.生成了一个新的jobId 比如是0。

3.主要的是生成一个JobWaiter()对象。

4.eventProcessLoop.post(JobSubmitted()提交作业了,看到了么?这个地方就是上面我们说的需要注意的点,new DAGSchedulerEventProcessLoop(this)上面是不是new了一个呢?

这个地方是eventProcessLoop 调用post方法,将JobSubmitted放入排队的带处理队列中,他是一个一直循环的处理的进程,当有JobSubmitted放入队列的时候就开始处理,里面有个onReceive()方法,这个方法被DAGSchedulerEventProcessLoop里面的onReceive方法所重写。

让我们看一下

spark[源码]-DAG调度器源码分析[二]

在看一下doOnReceive(event)

spark[源码]-DAG调度器源码分析[二]

其实调用的是handleJobSubmitted()方法,在看这个方法的时候我们还是先看看EventLoop这个抽象类吧。看看具体是啥。

EventLoop()

/**
* An event loop to receive events from the caller and process all events in the event thread. It
* will start an exclusive event thread to process all events.
*
* Note: The event queue will grow indefinitely. So subclasses should make sure `onReceive` can
* handle events in time to avoid the potential OOM.
*/
private[spark] abstract class EventLoop[E](name: String) extends Logging { private val eventQueue: BlockingQueue[E] = new LinkedBlockingDeque[E]() private val stopped = new AtomicBoolean(false) private val eventThread = new Thread(name) {
setDaemon(true) override def run(): Unit = {
try {
while (!stopped.get) {
val event = eventQueue.take()
try {
onReceive(event)
} catch {
case NonFatal(e) => {
try {
onError(e)
} catch {
case NonFatal(e) => logError("Unexpected error in " + name, e)
}
}
}
}
} catch {
case ie: InterruptedException => // exit even if eventQueue is not empty
case NonFatal(e) => logError("Unexpected error in " + name, e)
}
} }
}

注释翻译:

事件循环从调用者接收事件并处理事件线程中的所有事件。它将启动一个单独的事件线程来处理所有事件。

注意:事件队列将无限增长。因此子类应该确保“onReceive”能够及时处理事件,以避免潜在的OOM。

1.定义了一个事件队列 eventQueue: BlockingQueue[E] = new LinkedBlockingDeque[E]()

2.定义了一个事件线程,private val eventThread = new Thread(name) {}

3.当调用EventLoop的start()方法的时候,其实调用的是eventThread()的start()方法,这个地方还记得上面写到的1585行的start()调用么?

spark[源码]-DAG调度器源码分析[二]

这个地方onstart()啥都没干,掉用了eventThread的start()方法,这个方法里面调用了onReceive(event)方法,这个方法在DAGScheduler中又被重写了。好了到此你知道了整体关系了。

spark[源码]-DAG调度器源码分析[二]

dagScheduler.handleJobSubmitted

private[scheduler] def handleJobSubmitted(jobId: Int,
finalRDD: RDD[_],
func: (TaskContext, Iterator[_]) => _,
partitions: Array[Int],
callSite: CallSite,
listener: JobListener,
properties: Properties) {
var finalStage: ResultStage = null
try {
// New stage creation may throw an exception if, for example, jobs are run on a
// HadoopRDD whose underlying HDFS files have been deleted.
finalStage = newResultStage(finalRDD, func, partitions, jobId, callSite)
} catch {
case e: Exception =>
logWarning("Creating new stage failed due to exception - job: " + jobId, e)
listener.jobFailed(e)
return
} val job = new ActiveJob(jobId, finalStage, callSite, listener, properties)
clearCacheLocs()
logInfo("Got job %s (%s) with %d output partitions".format(
job.jobId, callSite.shortForm, partitions.length))
logInfo("Final stage: " + finalStage + " (" + finalStage.name + ")")
logInfo("Parents of final stage: " + finalStage.parents)
logInfo("Missing parents: " + getMissingParentStages(finalStage)) val jobSubmissionTime = clock.getTimeMillis()
jobIdToActiveJob(jobId) = job
activeJobs += job
finalStage.setActiveJob(job)
val stageIds = jobIdToStageIds(jobId).toArray
val stageInfos = stageIds.flatMap(id => stageIdToStage.get(id).map(_.latestInfo))
listenerBus.post(
SparkListenerJobStart(job.jobId, jobSubmissionTime, stageInfos, properties))
submitStage(finalStage) submitWaitingStages()
}

1.DAGScheduler将Job分解成具有前后依赖关系的多个stage.

2.DAGScheduler是根据ShuffleDependency划分stage的.

3.stage分为ShuffleMapStage和ResultStage;一个Job中包含一个ResultStage及多个ShuffleMapStage.

4.一个stage包含多个tasks,task的个数即该stage的finalRDD的partition数.

5.一个stage中的task完全相同,ShuffleMapStage包含的都是ShuffleMapTask;ResultStage包含的都是ResultTask.

注意上面总结的这几点,我们开始一一的坐解析。先从newResultStage()开始

Stage划分

spark[源码]-DAG调度器源码分析[二]

还是先盗个图,这样看着更好。

栈调用:

DAGScheduler.newResultStage

    • DAGScheduler.getParentStagesAndId
      • DAGScheduler.getParentStages
        • DAGScheduler.getShuffleMapStage
          • DAGScheduler.getAncestorShuffleDependencies
          • DAGScheduler.newOrUsedShuffleStage
            • DAGScheduler.newShuffleMapStage

这里面把最后一个触发action动作的rdd叫做finalRDD,所有的划分都是从这个rdd开始往前推的,是一个从右往左的过程,因为是递归调用,因此越靠左边的stageid越小,也越先调用。

newResultStage

调用是从最后一个RDD所在的Stage,ResultStage开始划分的,这里即为G所在的Stage。但是在生成这个Stage之前会生成它的parent Stage,就这样递归的把parent Stage都先生成了。

spark[源码]-DAG调度器源码分析[二]

getParentStagesAndId

spark[源码]-DAG调度器源码分析[二]

该函数调用getParentStages获得parentStages,之后获取一个递增的id,连同刚获得的parentStages一同返回,并在newResultStage中,将id作为ResultStage的id。

getParentStages()

  private def getParentStages(rdd: RDD[_], firstJobId: Int): List[Stage] = {
//存储parents的stage
val parents = new HashSet[Stage]
//存储已经遍历过的rdd
val visited = new HashSet[RDD[_]]
// We are manually maintaining a stack here to prevent *Error
// caused by recursively visiting
//需要遍历的rdd
val waitingForVisit = new Stack[RDD[_]]
def visit(r: RDD[_]) {
if (!visited(r)) {
visited += r
// Kind of ugly: need to register RDDs with the cache here since
// we can't do it in its constructor because # of partitions is unknown
for (dep <- r.dependencies) {
dep match {
//若是宽依赖则生成新的Stage
case shufDep: ShuffleDependency[_, _, _] =>
parents += getShuffleMapStage(shufDep, firstJobId)
//若是窄依赖则加入Stack,等待处理
case _ =>
waitingForVisit.push(dep.rdd)
}
}
}
}
//在Stack中加入最后一个RDD
waitingForVisit.push(rdd)
//广度优先遍历
while (waitingForVisit.nonEmpty) {
visit(waitingForVisit.pop())
}
//返回ParentStages List
parents.toList
}

函数getParentStages中,遍历整个RDD依赖图的finalRDD的List[dependency],若遇到ShuffleDependency,这是相当于是一个另一个stage了,此时我们就得获取这个stage了呀,则调用getShuffleMapStage(shufDep,jobId)返回一个ShuffleMapStage类型对象,添加到父stage列表中,若为NarrowDependency,则将NarrowDependency包含的RDD加入到待visit队列中,之后继续遍历待visit队列中的RDD,直到遇到ShuffleDependency或无依赖的RDD。

函数getParentStages的职责说白了就是:以参数rdd为起点,一级一级遍历依赖,碰到窄依赖就继续往前遍历,碰到宽依赖就调用getShuffleMapStage(shufDep, jobId)。这里需要特别注意的是,getParentStages以rdd为起点遍历RDD依赖并不会遍历整个RDD依赖图,而是一级一级遍历直到所有“遍历路线”都碰到了宽依赖就停止。剩下的事,在遍历的过程中交给getShuffleMapStage

getshuffleMapStage

  private def getShuffleMapStage(
shuffleDep: ShuffleDependency[_, _, _],
firstJobId: Int): ShuffleMapStage = {
shuffleToMapStage.get(shuffleDep.shuffleId) match {
//若找到则直接返回
case Some(stage) => stage
case None =>
// 检查这个Stage的Parent Stage是否生成
// 若没有,则生成它们
// We are going to register ancestor shuffle dependencies
getAncestorShuffleDependencies(shuffleDep.rdd).foreach { dep =>
shuffleToMapStage(dep.shuffleId) = newOrUsedShuffleStage(dep, firstJobId)
}
// Then register current shuffleDep
// 生成新的Stage
val stage = newOrUsedShuffleStage(shuffleDep, firstJobId)
//将新的Stage 加入到 HashMap
shuffleToMapStage(shuffleDep.shuffleId) = stage
//返回新的Stage
stage
}
}

上面说了遇到ShuffleDependency 的依赖就是一个新的stage的开始,因此我们需要得到这个stage,前面我们还说到了,stage只有两种,一种叫ShuffleMapStage,一种叫resultStage而且只能有一个,因此除了最开始的那个stage,其他的都是shuffleMapStage,因此遇到的时候我们就得获取他。

这个地方有两种情况,就是之前已经创建好了,当你有多个action动作的时候,可能存在多个依赖关系,此次划分的stage可能之前你已经划分好了,因此做一次检查这个很重要的。

getAncestorShuffleDependencies

  private def getAncestorShuffleDependencies(rdd: RDD[_]): Stack[ShuffleDependency[_, _, _]] = {
val parents = new Stack[ShuffleDependency[_, _, _]]
val visited = new HashSet[RDD[_]]
// We are manually maintaining a stack here to prevent *Error
// caused by recursively visiting
val waitingForVisit = new Stack[RDD[_]]
def visit(r: RDD[_]) {
if (!visited(r)) {
visited += r
for (dep <- r.dependencies) {
dep match {
case shufDep: ShuffleDependency[_, _, _] =>
if (!shuffleToMapStage.contains(shufDep.shuffleId)) {
parents.push(shufDep)
}
case _ =>
}
waitingForVisit.push(dep.rdd)
}
}
} waitingForVisit.push(rdd)
while (waitingForVisit.nonEmpty) {
visit(waitingForVisit.pop())
}
parents
}

可以看到的是和newResultStage中的getParentStages会非常类似,不同的是这里会先判断shuffleToMapStage是否存在这个Stage,不存在的话会将这个shuffledepen push到parents这个Stack,最会返回给上述的getShuffleMapStage,调用newOrUsedShuffleStage生成新的Stage

newOrUsedShuffleStage

这个地方出现了上面提到了每个Stage中的task数量是最后一个rdd的partitions决定的,因为在创建newShuffleMapStage()的时候将这个当参数传入了。

还有一点:判断stage是否已经被计算过了,如果计算过了,则将结果赋值到这个stage中,如果没计算则注册到mapOutputTracker中为存储元数据占位。

val numTasks = rdd.partitions.length

  private def newOrUsedShuffleStage(
shuffleDep: ShuffleDependency[_, _, _],
firstJobId: Int): ShuffleMapStage = {
val rdd = shuffleDep.rdd
val numTasks = rdd.partitions.length
//生成新的Stage
val stage = newShuffleMapStage(rdd, numTasks, shuffleDep, firstJobId, rdd.creationSite)
//判断Stage是否已经被计算过
//若计算过,则把结果复制到新的stage
if (mapOutputTracker.containsShuffle(shuffleDep.shuffleId)) {
val serLocs = mapOutputTracker.getSerializedMapOutputStatuses(shuffleDep.shuffleId)
val locs = MapOutputTracker.deserializeMapStatuses(serLocs)
(0 until locs.length).foreach { i =>
if (locs(i) ne null) {
// locs(i) will be null if missing
stage.addOutputLoc(i, locs(i))
}
}
} else {
//如果没计算过,就在注册mapOutputTracker Stage
//为存储元数据占位
// Kind of ugly: need to register RDDs with the cache and map output tracker here
// since we can't do it in the RDD constructor because # of partitions is unknown
logInfo("Registering RDD " + rdd.id + " (" + rdd.getCreationSite + ")")
mapOutputTracker.registerShuffle(shuffleDep.shuffleId, rdd.partitions.length)
}
stage
}

newShuffleMapStage

  private def newShuffleMapStage(
rdd: RDD[_],
numTasks: Int,
shuffleDep: ShuffleDependency[_, _, _],
firstJobId: Int,
callSite: CallSite): ShuffleMapStage = {
val (parentStages: List[Stage], id: Int) = getParentStagesAndId(rdd, firstJobId)
val stage: ShuffleMapStage = new ShuffleMapStage(id, rdd, numTasks, parentStages,
firstJobId, callSite, shuffleDep) stageIdToStage(id) = stage
updateJobIdStageIdMaps(firstJobId, stage)
stage
}

通过代码发现newShuffleMapStage 和newResultStage 基本一样,那流程也基本一样了,也是上面整个过程的再次循环。

通过stage的划分,我们就这样一层层的划分完成了,每个stage都知道其依赖rdd的stage情况。下面让我们看看job的创建,以及taskSet的创建。

任务创建

spark[源码]-DAG调度器源码分析[二]

finalStage创建完成后,我们要创建ActiveJob了,同时为每个stage创建stageInfos。

提交finalStage

submitStage

  private def submitStage(stage: Stage) {
val jobId = activeJobForStage(stage)
if (jobId.isDefined) {
logDebug("submitStage(" + stage + ")")
//得到缺失的Parent Stage
if (!waitingStages(stage) && !runningStages(stage) && !failedStages(stage)) {
val missing = getMissingParentStages(stage).sortBy(_.id)
logDebug("missing: " + missing)
if (missing.isEmpty) {
logInfo("Submitting " + stage + " (" + stage.rdd + "), which has no missing parents")
//如果没有缺失的Parent Stage,
//那么代表着该Stage可以运行了
//submitMissingTasks会完成DAGScheduler最后的工作,
//向TaskScheduler 提交 Task
submitMissingTasks(stage, jobId.get)
} else {
//深度优先遍历
for (parent <- missing) {
submitStage(parent)
}
waitingStages += stage
}
}
} else {
abortStage(stage, "No active job for stage " + stage.id, None)
}
}

就是在正式跑这个job的时候,先检查一下其parents的情况,这个也是一个深度遍历的过程,如果存在丢失,则递归调用继续检查丢失的。最终到没有丢失的情况时,提交stage。

getMissingParentStages()

  private def getMissingParentStages(stage: Stage): List[Stage] = {
val missing = new HashSet[Stage]
val visited = new HashSet[RDD[_]]
// We are manually maintaining a stack here to prevent *Error
// caused by recursively visiting
val waitingForVisit = new Stack[RDD[_]]
def visit(rdd: RDD[_]) {
if (!visited(rdd)) {
visited += rdd
val rddHasUncachedPartitions = getCacheLocs(rdd).contains(Nil)
if (rddHasUncachedPartitions) {
for (dep <- rdd.dependencies) {
dep match {
case shufDep: ShuffleDependency[_, _, _] =>
val mapStage = getShuffleMapStage(shufDep, stage.firstJobId)
if (!mapStage.isAvailable) {
missing += mapStage
}
case narrowDep: NarrowDependency[_] =>
waitingForVisit.push(narrowDep.rdd)
}
}
}
}
}
waitingForVisit.push(stage.rdd)
while (waitingForVisit.nonEmpty) {
visit(waitingForVisit.pop())
}
missing.toList
}

getMissingParentStages

就是检查是否有丢失的情况,如果有丢失的加入到missing里面返回,让submitStage将丢失的stage陆续提交,得到计算结果。

submitMissingTasks

private def submitMissingTasks(stage: Stage, jobId: Int) {
logDebug("submitMissingTasks(" + stage + ")")
// Get our pending tasks and remember them in our pendingTasks entry
stage.pendingPartitions.clear() // First figure out the indexes of partition ids to compute.
val partitionsToCompute: Seq[Int] = stage.findMissingPartitions() // Create internal accumulators if the stage has no accumulators initialized.
// Reset internal accumulators only if this stage is not partially submitted
// Otherwise, we may override existing accumulator values from some tasks
if (stage.internalAccumulators.isEmpty || stage.numPartitions == partitionsToCompute.size) {
stage.resetInternalAccumulators()
} // Use the scheduling pool, job group, description, etc. from an ActiveJob associated
// with this Stage
val properties = jobIdToActiveJob(jobId).properties runningStages += stage
// SparkListenerStageSubmitted should be posted before testing whether tasks are
// serializable. If tasks are not serializable, a SparkListenerStageCompleted event
// will be posted, which should always come after a corresponding SparkListenerStageSubmitted
// event.
stage match {
case s: ShuffleMapStage =>
outputCommitCoordinator.stageStart(stage = s.id, maxPartitionId = s.numPartitions - 1)
case s: ResultStage =>
outputCommitCoordinator.stageStart(
stage = s.id, maxPartitionId = s.rdd.partitions.length - 1)
}
val taskIdToLocations: Map[Int, Seq[TaskLocation]] = try {
stage match {
case s: ShuffleMapStage =>
partitionsToCompute.map { id => (id, getPreferredLocs(stage.rdd, id))}.toMap
case s: ResultStage =>
val job = s.activeJob.get
partitionsToCompute.map { id =>
val p = s.partitions(id)
(id, getPreferredLocs(stage.rdd, p))
}.toMap
}
} catch {
case NonFatal(e) =>
stage.makeNewStageAttempt(partitionsToCompute.size)
listenerBus.post(SparkListenerStageSubmitted(stage.latestInfo, properties))
abortStage(stage, s"Task creation failed: $e\n${e.getStackTraceString}", Some(e))
runningStages -= stage
return
} stage.makeNewStageAttempt(partitionsToCompute.size, taskIdToLocations.values.toSeq)
listenerBus.post(SparkListenerStageSubmitted(stage.latestInfo, properties)) // TODO: Maybe we can keep the taskBinary in Stage to avoid serializing it multiple times.
// Broadcasted binary for the task, used to dispatch tasks to executors. Note that we broadcast
// the serialized copy of the RDD and for each task we will deserialize it, which means each
// task gets a different copy of the RDD. This provides stronger isolation between tasks that
// might modify state of objects referenced in their closures. This is necessary in Hadoop
// where the JobConf/Configuration object is not thread-safe.
var taskBinary: Broadcast[Array[Byte]] = null
try {
// For ShuffleMapTask, serialize and broadcast (rdd, shuffleDep).
// For ResultTask, serialize and broadcast (rdd, func).
val taskBinaryBytes: Array[Byte] = stage match {
case stage: ShuffleMapStage =>
closureSerializer.serialize((stage.rdd, stage.shuffleDep): AnyRef).array()
case stage: ResultStage =>
closureSerializer.serialize((stage.rdd, stage.func): AnyRef).array()
} taskBinary = sc.broadcast(taskBinaryBytes)
} catch {
// In the case of a failure during serialization, abort the stage.
case e: NotSerializableException =>
abortStage(stage, "Task not serializable: " + e.toString, Some(e))
runningStages -= stage // Abort execution
return
case NonFatal(e) =>
abortStage(stage, s"Task serialization failed: $e\n${e.getStackTraceString}", Some(e))
runningStages -= stage
return
} val tasks: Seq[Task[_]] = try {
stage match {
case stage: ShuffleMapStage =>
partitionsToCompute.map { id =>
val locs = taskIdToLocations(id)
val part = stage.rdd.partitions(id)
new ShuffleMapTask(stage.id, stage.latestInfo.attemptId,
taskBinary, part, locs, stage.internalAccumulators)
} case stage: ResultStage =>
val job = stage.activeJob.get
partitionsToCompute.map { id =>
val p: Int = stage.partitions(id)
val part = stage.rdd.partitions(p)
val locs = taskIdToLocations(id)
new ResultTask(stage.id, stage.latestInfo.attemptId,
taskBinary, part, locs, id, stage.internalAccumulators)
}
}
} catch {
case NonFatal(e) =>
abortStage(stage, s"Task creation failed: $e\n${e.getStackTraceString}", Some(e))
runningStages -= stage
return
} if (tasks.size > 0) {
logInfo("Submitting " + tasks.size + " missing tasks from " + stage + " (" + stage.rdd + ")")
stage.pendingPartitions ++= tasks.map(_.partitionId)
logDebug("New pending partitions: " + stage.pendingPartitions)
taskScheduler.submitTasks(new TaskSet(
tasks.toArray, stage.id, stage.latestInfo.attemptId, jobId, properties))
stage.latestInfo.submissionTime = Some(clock.getTimeMillis())
} else {
// Because we posted SparkListenerStageSubmitted earlier, we should mark
// the stage as completed here in case there are no tasks to run
markStageAsFinished(stage, None) val debugString = stage match {
case stage: ShuffleMapStage =>
s"Stage ${stage} is actually done; " +
s"(available: ${stage.isAvailable}," +
s"available outputs: ${stage.numAvailableOutputs}," +
s"partitions: ${stage.numPartitions})"
case stage : ResultStage =>
s"Stage ${stage} is actually done; (partitions: ${stage.numPartitions})"
}
logDebug(debugString)
}
}

submitMissingTasks

TaskSet保存了Stage包含的一组完全相同的Task,每个Task的处理逻辑完全相同,不同的是处理的数据,每个Task负责一个Partition。

spark[源码]-DAG调度器源码分析[二]

最后就是将一个TaskSet提交出去了,至此DAG阶段的处理就全部完成了。