归并树,与我们原学过的归并排序是一样的原理,但是在那个的基础上进行扩展应用。首先每个节点储存了它每个节点所代表的点的有序序列,还有就是每个点里面包含的所有的b[i]在左右子树的排名辅助更新数据,还有一个用来记录当前节点a[] >b[] 的数量的num。这时候查询的话就是线段树查询了,然后更新,首先求出要更新进去的点在原本数组的排名,然后就可以将该数据更新进去范围里面的lazy数组了,那么这时候lazy数组怎么使用?其实你这个lazy数组就是你更新进来的数据在确定范围内的一个排名,那么你这个排名就是a[] > b[] 的数量了。当然不可能更新所有的节点,所以需要使用lazydown的方法优化时间。
#include<bits/stdc++.h>
#define debug 0
#define Lson (rt << 1)
#define Rson ((rt << 1) | 1)
#define M ((l + r) / 2) using namespace std; const long long mod = 1e9 + ;
const int maxn = ; int T, n, m, ans, last, cnt, L, R, X;
int a[maxn], b[maxn], st[maxn * ], en[maxn * ], lazy[maxn * ], num[maxn * ];
int pl[maxn * ], pr[maxn * ], pool[maxn * ]; void Build(int l, int r, int rt){
lazy[rt] = -;
if(l == r){
st[rt] = ++cnt;en[rt] = cnt;
pool[cnt] = b[l];
num[rt] = (a[l] >= b[l]);
return ;
}
Build(l, M, Lson);Build(M + , r, Rson);
num[rt] = num[Lson] + num[Rson];
int leftL = st[Lson], leftR = en[Lson];
int rightL = st[Rson], rightR = en[Rson]; st[rt] = cnt + ;
while(leftL <= leftR && rightL <= rightR)pool[++cnt] = ((pool[leftL] <= pool[rightL]) ? pool[leftL ++] : pool[rightL ++]);
while(leftL <= leftR)pool[++cnt] = pool[leftL ++];
while(rightL <= rightR)pool[++cnt] = pool[rightL ++];
en[rt] = cnt; leftL = st[Lson], rightL = st[Rson];
for(int i = st[rt]; i <= en[rt]; i ++){
while(leftL <= leftR && pool[leftL] <= pool[i]) leftL ++;
while(rightL <= rightR && pool[rightL] <= pool[i]) rightL ++;
pl[i] = leftL - ; pr[i] = rightL - ;
if(pl[i] < st[Lson]) pl[i] = ;
if(pr[i] < st[Rson]) pr[i] = ;
}
} void Lazy(int rt, int pos){
num[rt] = pos ? pos - st[rt] + : ;
lazy[rt] = pos;
} void Pushdown(int rt){
if(lazy[rt] == -) return ;
int pos = lazy[rt];
Lazy(Lson, pl[pos]);
Lazy(Rson, pr[pos]);
lazy[rt] = -;
} int erfen(int x){
int l = st[], r = en[], ans = ;
while(l <= r){
if(pool[M] <= x){ ans = M; l = M + ;}
else r = M - ;
}
return ans;
} void query(int l, int r, int rt){
if(L <= l && r <= R){
last += num[rt];
return ;
}
Pushdown(rt);
if(L <= M) query(l, M, Lson);
if(R > M) query(M + , r, Rson);
num[rt] = num[Lson] + num[Rson];
} void Update(int l, int r, int pos, int rt){
if(L <= l && r <= R){
Lazy(rt, pos);return ;
}
Pushdown(rt);
if(L <= M) Update(l, M, pl[pos], Lson);
if(R > M) Update(M + z1, r, pr[pos], Rson);
num[rt] = num[Lson] + num[Rson];
} int AA,BB,CC = ~(<<),MM = (<<) - ;
int rnd(){
AA = ( + (last >> )) * (AA&MM) + (AA >> );
BB = ( + (last >> )) * (BB&MM) + (BB >> );
return (CC & ((AA << ) + BB)) % ;
} int main(){
int n,m;
scanf("%d", &T);while(T --){
ans = last = cnt = ;
scanf("%d%d%d%d", &n, &m, &AA, &BB);
for(int i = ; i <= n; i ++) scanf("%d",&a[i]);
for(int i = ; i <= n; i ++) scanf("%d",&b[i]);
Build(, n, ); for(int i = ; i <= m; i ++){
L = rnd()%n + ; R = rnd()%n + ; X = rnd() + ;
if(L > R)swap(L, R);
if((L + R + X) & )
Update(, n, erfen(X), );
else{
last = ;
query(, n, );
ans = (1LL * i * last % mod + ans) % mod;
}
}
printf("%d\n",ans);
}
return ;
}