[BZOJ]4805: 欧拉函数求和

时间:2023-03-09 18:38:36
[BZOJ]4805: 欧拉函数求和

解题思路类似莫比乌斯函数之和

题目大意:求[1,n]内的欧拉函数$\varphi$之和。($n<=2*10^{9}$)

思路:令$ M(n)=\sum_{i=1}^{n}\varphi (i)  $,题目所求即为$ M(n) $。

由于$ \sum_{d|n} \varphi (d)=n $ ,所以$ \sum_{i=1}^{n} \sum_{d|i} \varphi (d)=\frac{n(n+1)}{2} $

令$ i=kd $,则有$ \sum_{i=1}^{n} \sum_{d|i} \varphi (d)= \sum_{k=1}^{n} \sum_{d=1}^{\left \lfloor n/k \right \rfloor} \varphi (d) = \sum_{k=1}^{n} M(\left \lfloor n/k \right \rfloor) =\frac{n(n+1)}{2} $

那么$ M(n)=\frac{n(n+1)}{2}-\sum_{i=2}^{n} M(\left \lfloor n/i \right \rfloor) $

由于$ \left \lfloor n/i \right \rfloor $的取值只有$ O(\sqrt{n}) $种,预处理出前$ n^{\frac{2}{3}} $的$ M(n) $,然后记忆化搜索,可以证明总时间复杂度为$ O(n^{\frac{2}{3}}) $。

#include<cstdio>
#define ll long long
#define MN 1600000
#define MOD 2333333
struct edge{edge*nx;ll f;int x;}*h[MOD];
ll f[MN+];
int p[MN+],pn;
bool u[MN+];
ll cal(int n)
{
if(n<=MN)return f[n];
for(edge*i=h[n%MOD];i;i=i->nx)if(i->x==n)return i->f;
edge*np=new edge;*np=(edge){h[n%MOD],1LL*n*(n+)>>,n};h[n%MOD]=np;
for(int i=,ls;i<=n;i=ls+)ls=n/(n/i),np->f-=(ls-i+)*cal(n/i);
return np->f;
}
int main()
{
int n,i,j;
scanf("%d",&n);
for(f[]=,i=;i<=MN;++i)
{
if(!u[i])p[++pn]=i,f[i]=i-;
for(j=;i*p[j]<=MN&&(u[i*p[j]]=);++j)
if(i%p[j])f[i*p[j]]=f[i]*(p[j]-);
else{f[i*p[j]]=f[i]*p[j];break;}
f[i]+=f[i-];
}
printf("%lld",cal(n));
}