select、poll、epoll简介

时间:2023-03-10 08:47:02
select、poll、epoll简介

epoll跟select都能提供多路I/O复用的解决方案。在现在的Linux内核里有都能够支持,其中epoll是Linux所特有,而select则应该是POSIX所规定,一般操作系统均有实现

select:

select本质上是通过设置或者检查存放fd标志位的数据结构来进行下一步处理。这样所带来的缺点是:

1、 单个进程可监视的fd数量被限制,即能监听端口的大小有限。

一般来说这个数目和系统内存关系很大,具体数目可以cat /proc/sys/fs/file-max察看。32位机默认是1024个。64位机默认是2048.

2、 对socket进行扫描时是线性扫描,即采用轮询的方法,效率较低:

当套接字比较多的时候,每次select()都要通过遍历FD_SETSIZE个Socket来完成调度,不管哪个Socket是活跃的,都遍历一遍。这会浪费很多CPU时间。如果能给套接字注册某个回调函数,当他们活跃时,自动完成相关操作,那就避免了轮询,这正是epoll与kqueue做的。

3、需要维护一个用来存放大量fd的数据结构,这样会使得用户空间和内核空间在传递该结构时复制开销大

poll:

poll本质上和select没有区别,它将用户传入的数组拷贝到内核空间,然后查询每个fd对应的设备状态,如果设备就绪则在设备等待队列中加入一项并继续遍历,如果遍历完所有fd后没有发现就绪设备,则挂起当前进程,直到设备就绪或者主动超时,被唤醒后它又要再次遍历fd。这个过程经历了多次无谓的遍历。

它没有最大连接数的限制,原因是它是基于链表来存储的,但是同样有一个缺点:

1、大量的fd的数组被整体复制于用户态和内核地址空间之间,而不管这样的复制是不是有意义。                                                                                                                                      2、poll还有一个特点是“水平触发”,如果报告了fd后,没有被处理,那么下次poll时会再次报告该fd。

epoll:

epoll支持水平触发和边缘触发,最大的特点在于边缘触发,它只告诉进程哪些fd刚刚变为就需态,并且只会通知一次。还有一个特点是,epoll使用“事件”的就绪通知方式,通过epoll_ctl注册fd,一旦该fd就绪,内核就会采用类似callback的回调机制来激活该fd,epoll_wait便可以收到通知

epoll的优点:

1、没有最大并发连接的限制,能打开的FD的上限远大于1024(1G的内存上能监听约10万个端口);
2、效率提升,不是轮询的方式,不会随着FD数目的增加效率下降。只有活跃可用的FD才会调用callback函数;
      即Epoll最大的优点就在于它只管你“活跃”的连接,而跟连接总数无关,因此在实际的网络环境中,Epoll的效率就会远远高于select和poll。
3、 内存拷贝,利用mmap()文件映射内存加速与内核空间的消息传递;即epoll使用mmap减少复制开销。

select、poll、epoll 区别总结:

1、支持一个进程所能打开的最大连接数

select

单个进程所能打开的最大连接数有FD_SETSIZE宏定义,其大小是32个整数的大小(在32位的机器上,大小就是32*32,同理64位机器上FD_SETSIZE为32*64),当然我们可以对进行修改,然后重新编译内核,但是性能可能会受到影响,这需要进一步的测试。

poll

poll本质上和select没有区别,但是它没有最大连接数的限制,原因是它是基于链表来存储的

epoll

虽然连接数有上限,但是很大,1G内存的机器上可以打开10万左右的连接,2G内存的机器可以打开20万左右的连接

2、FD剧增后带来的IO效率问题

select

因为每次调用时都会对连接进行线性遍历,所以随着FD的增加会造成遍历速度慢的“线性下降性能问题”。

poll

同上

epoll

因为epoll内核中实现是根据每个fd上的callback函数来实现的,只有活跃的socket才会主动调用callback,所以在活跃socket较少的情况下,使用epoll没有前面两者的线性下降的性能问题,但是所有socket都很活跃的情况下,可能会有性能问题。

3、 消息传递方式

select

内核需要将消息传递到用户空间,都需要内核拷贝动作

poll

同上

epoll

epoll通过内核和用户空间共享一块内存来实现的。

缺点:

select, poll, epoll 都是I/O多路复用的具体的实现,之所以有这三个鬼存在,其实是他们出现是有先后顺序的。

select 被实现以后,很快就暴露出了很多问题。

  • select 会修改传入的参数数组,这个对于一个需要调用很多次的函数,是非常不友好的。
  • select 如果任何一个sock(I/O stream)出现了数据,select 仅仅会返回,但是并不会告诉你是那个sock上有数据,于是你只能自己一个一个的找,10几个sock可能还好,要是几万的sock每次都找一遍,这个无谓的开销就颇有海天盛筵的豪气了。
  • select 只能监视1024个链接, 这个跟草榴没啥关系哦,linux 定义在头文件中的,参见FD_SETSIZE。
  • select 不是线程安全的,如果你把一个sock加入到select, 然后突然另外一个线程发现,尼玛,这个sock不用,要收回。对不起,这个select 不支持的,如果你丧心病狂的竟然关掉这个sock, select的标准行为是。。呃。。不可预测的, 这个可是写在文档中的哦.
于是14年以后(1997年)一帮人又实现了poll, poll 修复了select的很多问题,比如
  • poll 去掉了1024个链接的限制,于是要多少链接呢, 主人你开心就好。
  • poll 从设计上来说,不再修改传入数组,不过这个要看你的平台了,所以行走江湖,还是小心为妙。

但是poll仍然不是线程安全的, 这就意味着,不管服务器有多强悍,你也只能在一个线程里面处理一组I/O流。你当然可以那多进程来配合了,不过然后你就有了多进程的各种问题。

于是5年以后, 在2002, 大神 Davide Libenzi 实现了epoll.

epoll 可以说是 I/O 多路复用最新的一个实现,epoll 修复了poll 和select绝大部分问题, 比如:

  • epoll 现在是线程安全的。
  • epoll 现在不仅告诉你sock组里面数据,还会告诉你具体哪个sock有数据,你不用自己去找了。

总结:

综上,在选择select,poll,epoll时要根据具体的使用场合以及这三种方式的自身特点。

1、表面上看epoll的性能最好,但是在连接数少并且连接都十分活跃的情况下,select和poll的性能可能比epoll好,毕竟epoll的通知机制需要很多函数回调。

2、select低效是因为每次它都需要轮询。但低效也是相对的,视情况而定,也可通过良好的设计改善

相关文章