topcoder srm 575 div1

时间:2023-03-09 09:32:46
topcoder srm 575 div1

problem1 link

如果$k$是先手必胜那么$f(k)=1$否则$f(k)=0$

通过对前面小的数字的计算可以发现:(1)$f(2k+1)=0$,(2)$f(2^{2k+1})=0$,(3)其他情况都是1

这个可以用数学归纳法证明

problem2 link

假设字符串的总长度为$n$

首先,设$x_{k}$为位置$i$经过$k$ 次交换后仍然在$i$的概率,那么在其他位置$j(j\ne i)$的概率为$\frac{x}{n-1}$.可以得到关于$x_{k}$的转移方程$x_{0}=1, x_{k}=x_{k-1}*\frac{C_{n-1}^{2}}{C_{n}^{2}}+(1-x_{k-1})*\frac{1}{C_{n}^{2}}$

计算出了$x_{k}$之后。对于$[1,n]$的某个位置$i$,其对答案的贡献为$G(i)=(x_{k}*P+\frac{x_{k}}{n-1}*(T-P))*S_{i}$

其中$S_{i}$表示位置$i$的数字。$P$表示任意选一个区间包含$i$的概率,$P=F_{i}=\frac{2i(n-i+1)}{n(n+1)}$,而$T=\sum_{i=1}^{n}F_{i}$

problem3 link

这个可以用最大流来解决。

(1)将每个黑色的格子拆分成两个点,一个表示进入该格子,一个表示离开该格子。这两个点之间连边,流量为1。

(2)将所有白色的格子,分为两类,第一类是列数为偶数的,第二类是列数为奇数的。源点向第一类连边,流量为1;第二类向汇点连边,流量为1。另外,第一类向周围的四个黑色格子拆成的第一个连边,黑色格子拆成的第二个向第二类连边。

最后求最大流即可。

code for problem1

#include <string>

class TheNumberGameDivOne {
public:
std::string find(long long n) {
if (IsFirstWin(n)) {
return "John";
}
return "Brus";
} private:
bool IsFirstWin(long long n) {
if (n == 1 || n % 2 == 1) {
return false;
}
int c = 0;
while (n % 2 == 0) {
++c;
n /= 2;
}
if (n == 1 && c % 2 == 1) {
return false;
}
return true;
}
};

code for problem2

#include <string>
#include <vector> class TheSwapsDivOne {
public:
double find(const std::vector<std::string> &seq, int k) {
int n = 0;
int sum = 0;
for (const auto &e : seq) {
n += static_cast<int>(e.size());
for (char c : e) {
sum += c - '0';
}
}
auto Get = [&](int t) { return 2.0 * t * (n - t + 1) / n / (n + 1); };
double sum_rate = 0.0;
for (int i = 1; i <= n; ++i) {
sum_rate += Get(i);
}
double p = 1.0 * (n - 2) / n;
double q = 2.0 / n / (n - 1);
double x = 1.0;
for (int i = 1; i <= k; ++i) {
x = p * x + q * (1 - x);
}
double result = 0;
int idx = 0;
for (const auto &e : seq) {
for (size_t i = 0; i < e.size(); ++i) {
++idx;
int d = e[i] - '0';
double r = Get(idx);
result += (x * r + (1 - x) / (n - 1) * (sum_rate - r)) * d;
}
}
return result;
}
};

code for problem3

#include <limits>
#include <string>
#include <unordered_map>
#include <vector> template <typename FlowType>
class MaxFlowSolver {
static constexpr FlowType kMaxFlow = std::numeric_limits<FlowType>::max();
static constexpr FlowType kZeroFlow = static_cast<FlowType>(0);
struct node {
int v;
int next;
FlowType cap;
}; public:
int VertexNumber() const { return used_index_; } FlowType MaxFlow(int source, int sink) {
source = GetIndex(source);
sink = GetIndex(sink); int n = VertexNumber();
std::vector<int> pre(n);
std::vector<int> cur(n);
std::vector<int> num(n);
std::vector<int> h(n);
for (int i = 0; i < n; ++i) {
cur[i] = head_[i];
num[i] = 0;
h[i] = 0;
}
int u = source;
FlowType result = 0;
while (h[u] < n) {
if (u == sink) {
FlowType min_cap = kMaxFlow;
int v = -1;
for (int i = source; i != sink; i = edges_[cur[i]].v) {
int k = cur[i];
if (edges_[k].cap < min_cap) {
min_cap = edges_[k].cap;
v = i;
}
}
result += min_cap;
u = v;
for (int i = source; i != sink; i = edges_[cur[i]].v) {
int k = cur[i];
edges_[k].cap -= min_cap;
edges_[k ^ 1].cap += min_cap;
}
}
int index = -1;
for (int i = cur[u]; i != -1; i = edges_[i].next) {
if (edges_[i].cap > 0 && h[u] == h[edges_[i].v] + 1) {
index = i;
break;
}
}
if (index != -1) {
cur[u] = index;
pre[edges_[index].v] = u;
u = edges_[index].v;
} else {
if (--num[h[u]] == 0) {
break;
}
int k = n;
cur[u] = head_[u];
for (int i = head_[u]; i != -1; i = edges_[i].next) {
if (edges_[i].cap > 0 && h[edges_[i].v] < k) {
k = h[edges_[i].v];
}
}
if (k + 1 < n) {
num[k + 1] += 1;
}
h[u] = k + 1;
if (u != source) {
u = pre[u];
}
}
}
return result;
} MaxFlowSolver() = default; void Clear() {
edges_.clear();
head_.clear();
vertex_indexer_.clear();
used_index_ = 0;
} void InsertEdge(int from, int to, FlowType cap) {
from = GetIndex(from);
to = GetIndex(to);
AddEdge(from, to, cap);
AddEdge(to, from, kZeroFlow);
} private:
int GetIndex(int idx) {
auto iter = vertex_indexer_.find(idx);
if (iter != vertex_indexer_.end()) {
return iter->second;
}
int map_idx = used_index_++;
head_.push_back(-1);
return vertex_indexer_[idx] = map_idx;
} void AddEdge(int from, int to, FlowType cap) {
node p;
p.v = to;
p.cap = cap;
p.next = head_[from];
head_[from] = static_cast<int>(edges_.size());
edges_.emplace_back(p);
} std::vector<node> edges_;
std::vector<int> head_; std::unordered_map<int, int> vertex_indexer_;
int used_index_ = 0;
}; class TheTilesDivOne {
public:
int find(const std::vector<std::string> &board) {
MaxFlowSolver<int> solver;
int n = static_cast<int>(board.size());
int m = static_cast<int>(board[0].size());
auto GetWhite = [&](int x, int y) { return x * m + y; };
auto GetBlackIn = [&](int x, int y) { return GetWhite(x, y); };
auto GetBlackOut = [&](int x, int y) { return GetWhite(x, y) + n * m; };
auto Valid = [&](int x, int y) {
return 0 <= x && x < n && 0 <= y && y < m && board[x][y] != 'X';
};
int source = -1;
int sink = -2;
const int kDirX[] = {-1, 0, 1, 0};
const int kDirY[] = {0, 1, 0, -1};
for (int i = 0; i < n; ++i) {
for (int j = i & 1; j < m; j += 2) {
if (Valid(i, j)) {
int in = GetBlackIn(i, j);
int out = GetBlackOut(i, j);
solver.InsertEdge(in, out, 1);
for (int k = 0; k < 4; ++k) {
int kx = i + kDirX[k];
int ky = j + kDirY[k];
if (Valid(kx, ky)) {
if (kx % 2 == 0) {
solver.InsertEdge(GetWhite(kx, ky), in, 1);
} else {
solver.InsertEdge(out, GetWhite(kx, ky), 1);
}
}
}
}
}
}
for (int i = 0; i < n; ++i) {
for (int j = 0; j < m; ++j) {
if ((i + j) % 2 == 1 && Valid(i, j)) {
if (i % 2 == 0) {
solver.InsertEdge(source, GetWhite(i, j), 1);
} else {
solver.InsertEdge(GetWhite(i, j), sink, 1);
}
}
}
}
return solver.MaxFlow(source, sink);
}
};