cs224d 自然语言处理作业 problem set3 (一) 实现Recursive Nerual Net Work 递归神经网络

时间:2023-03-09 19:34:08
cs224d 自然语言处理作业 problem set3 (一) 实现Recursive Nerual Net Work 递归神经网络

1、Recursive Nerual Networks能够更好地体现每个词与词之间语法上的联系
这里我们选取的损失函数仍然是交叉熵函数

cs224d 自然语言处理作业 problem set3 (一) 实现Recursive Nerual Net Work 递归神经网络

2、整个网络的结构如下图所示:

cs224d 自然语言处理作业 problem set3 (一) 实现Recursive Nerual Net Work 递归神经网络

cs224d 自然语言处理作业 problem set3 (一) 实现Recursive Nerual Net Work 递归神经网络

cs224d 自然语言处理作业 problem set3 (一) 实现Recursive Nerual Net Work 递归神经网络

每个参数的更新时的梯队值如何计算,稍后再给大家计算相应的数学公式

这里先列出节点的合并规则

cs224d 自然语言处理作业 problem set3 (一) 实现Recursive Nerual Net Work 递归神经网络

cs224d 自然语言处理作业 problem set3 (一) 实现Recursive Nerual Net Work 递归神经网络

cs224d 自然语言处理作业 problem set3 (一) 实现Recursive Nerual Net Work 递归神经网络

cs224d 自然语言处理作业 problem set3 (一) 实现Recursive Nerual Net Work 递归神经网络

1、即假设将一句话中的词先两个合并,并通过神经网络计算出合并后的得分情况

2、然后找出合并后得分最高的两个词进行真正的合并,得到新的节点,其余节点不合并

3、将得到的新节点加入到下一轮两两合并的计算过程中,直至得到最终节点

下面是计算的代码:

'''
Created on 2017年10月5日 @author: weizhen
'''
# 一个简单的递归神经网络的实现,有着一个ReLU层和一个softmax层
# TODO : 必须要更新前向和后向传递函数
# 你可以通过执行 python rnn.py 方法来执行一个梯度检验
# 插入pdb.set_trace() 在你不确定将会发生什么的地方 import numpy as np
import collections
import pdb
import tree as treeM
import pickle class RNN: def __init__(self, wvecDim, outputDim, numWords, mbSize=30, rho=1e-4):
self.wvecDim = wvecDim
self.outputDim = outputDim
self.numWords = numWords
self.mbSize = mbSize
self.defaultVec = lambda : np.zeros((wvecDim,))
self.rho = rho def initParams(self):
np.random.seed(12341) # Word vectors
self.L = 0.01 * np.random.randn(self.wvecDim, self.numWords) # Hidden layer parameters
self.W = 0.01 * np.random.randn(self.wvecDim, 2 * self.wvecDim)
self.b = np.zeros((self.wvecDim)) # Softmax weights
# note this is " U "in the notes and the handout...
# there is a reason for the change in notation
self.Ws = 0.01 * np.random.randn(self.outputDim, self.wvecDim)
self.bs = np.zeros((self.outputDim)) self.stack = [self.L, self.W, self.b, self.Ws, self.bs] # Gradients
self.dW = np.empty(self.W.shape)
self.db = np.empty((self.wvecDim))
self.dWs = np.empty(self.Ws.shape)
self.dbs = np.empty((self.outputDim)) def costAndGrad(self, mbdata, test=False):
"""
每一个datum在minibatch里边都是一个树
前向计算每一个树,反向传播到每一个树
返回值:
cost:
梯度:w.r.t W,Ws,b,bs
以上变量的梯度都是在稀疏形式存储的
或者是以测试状态下的
Returns:
cost,correctArray,guessArray,total
"""
cost = 0.0
correct = []
guess = []
total = 0.0 self.L, self.W, self.b, self.Ws, self.bs = self.stack
# 初始化所有梯度都是0
self.dW[:] = 0
self.db[:] = 0
self.dWs[:] = 0
self.dbs[:] = 0
self.dL = collections.defaultdict(self.defaultVec) # 在每一个batch中前向计算每一个tree
for tree in mbdata:
c, tot = self.forwardProp(tree.root, correct, guess)
cost += c
total += tot
if test:
return (1. / len(mbdata)) * cost, correct, guess, total # 在每一个batch上进行反向传播
for tree in mbdata:
self.backProp(tree.root) # 通过mb的大小来计算损失和梯度
scale = (1. / self.mbSize)
for v in self.dL.values():
v *= scale # 添加L2正则化项
cost += (self.rho / 2) * np.sum(self.W ** 2)
cost += (self.rho / 2) * np.sum(self.Ws ** 2) return scale * cost, [self.dL, scale * (self.dW + self.rho * self.W), scale * self.db, scale * (self.dWs + self.rho * self.Ws), scale * self.dbs] def forwardProp(self, node, correct=[], guess=[]):
"""损失应该是一个不断更新的变量,总损失是我们需要用在准确率报告里边的数据"""
cost = total = 0.0
# 下面实现递归神经网络前向传播的函数
# 你应该更新 node.probs, node.hActsl,node.fprop,and cost
# node :你当前节点是在语法树上的
# correct : 这是一个不断更新的标记真值的列表
# guess: 这是一个不断更新的猜测我们的模型会预测为哪一个结果的列表
# (我们会同时使用正确的和猜测的值来构造我们的混淆矩阵)
L = self.L
# 隐藏层的参数
W = self.W
b = self.b # Softmax 权重
Ws = self.Ws
bs = self.bs if node.isLeaf:
node.hActsl = L[:, node.word]
else:
if not node.left.fprop:
cost_left, total_left = self.forwardProp(node.left, correct, guess)
cost += cost_left
total += total_left
if not node.right.fprop:
cost_right, total_right = self.forwardProp(node.right, correct, guess)
cost += cost_right
total += total_right node.hActsl = W.dot(np.hstack((node.left.hActsl, node.right.hActsl))) + b
node.hActsl[node.hActsl < 0] = 0 x = Ws.dot(node.hActsl) + bs
x -= np.max(x)
node.probs = np.exp(x) / np.sum(np.exp(x)) correct += [node.label]
guess += [np.argmax(node.probs)] cost -= np.log(node.probs[node.label]) node.fprop = True return cost, total + 1 def backProp(self, node, error=None):
"""
实现递归神经网络的反向传播函数
应该更新 self.dWs, self.dbs, self.dW, self.db, and self.dL[node.word] 相关地
node:你在语法树种的当前节点
error:误差从之前一个迭代过程中传递进来的
"""
# 清空节点
node.fprop = False L = self.L
# 隐藏节点的参数
W = self.W
b = self.b # Softmax层的权重
Ws = self.Ws
bs = self.bs error_this = node.probs
error_this[node.label] -= 1.0
delta = Ws.T.dot(error_this) self.dWs += np.outer(error_this, node.hActsl)
self.dbs += error_this if error is not None:
delta += error delta[node.hActsl == 0] = 0 if node.isLeaf:
self.dL[node.word] += delta
else:
self.dW += np.outer(delta, np.hstack([node.left.hActsl, node.right.hActsl]))
self.db += delta delta = np.dot(self.W.T, delta)
self.backProp(node.left, delta[:self.wvecDim])
self.backProp(node.right, delta[self.wvecDim:]) def updateParams(self, scale, update, log=False):
"""
如下这样更新参数
p:=p-scale*update
如果log是真的,输出根节点的均方误差,并且更新根节点的值
"""
if log:
for P, dP in zip(self.stack[1:], update[1:]):
pRMS = np.sqrt(np.mean(P ** 2))
dpRMS = np.sqrt(np.mean((scale * dP) ** 2))
print("weight rms=%f -- update rms=%f" % (pRMS, dpRMS))
self.stack[1:] = [P + scale * dP for P, dP in zip(self.stack[1:], update[1:])] # 解决词典并且进行稀疏的更新
dL = update[0]
for j in dL.iterkeys():
self.L[:, j] += scale.dL[j] def toFile(self, fid):
pickle.dump(self.stack, fid) def fromFile(self, fid):
self.stack = pickle.load(fid) def check_grad(self, data, epsilon=1e-6):
cost, grad = self.costAndGrad(data) err1 = 0.0
count = 0.0
print("Checking dW...")
for W, dW in zip(self.stack[1:], grad[1:]):
W = W[..., None]
dW = dW[..., None]
for i in range(W.shape[0]):
for j in range(W.shape[1]):
W[i, j] += epsilon
costP, _ = self.costAndGrad(data)
W[i, j] -= epsilon
numGrad = (costP - cost) / epsilon
err = np.abs(dW[i, j] - numGrad)
err1 += err
count += 1
if 0.001 > err1 / count:
print("Grad Check Passed for dW")
else:
print("Grad Check Failed for dW:Sum of Error=%.9f" % (err1 / count)) # check dL separately since dict
dL = grad[0]
L = self.stack[0]
err2 = 0.0
count = 0.0
print("Checking dL...")
for j in dL.keys():
for i in range(L.shape[0]):
L[i, j] += epsilon
costP, _ = self.costAndGrad(data)
L[i, j] -= epsilon
numGrad = (costP - cost) / epsilon
err = np.abs(dL[j][i] - numGrad)
err2 += err
count += 1
if 0.001 > err2 / count:
print("Grad Check Passed for dL")
else:
print("Grad Check Failed for dL: Sum of Error = %.9f" % (err2 / count)) if __name__ == '__main__': train = treeM.loadTrees()
numW = len(treeM.loadWordMap()) wvecDim = 10
outputDim = 5 rnn = RNN(wvecDim, outputDim, numW, mbSize=4)
rnn.initParams() mbData = train[:4]
print("Numerical gradient check...")
rnn.check_grad(mbData)

下面部分是构造节点的python文件tree.py

在进行计算时需要先运行tree.py文件进行tree结构的生成,然后进行合并计算

import collections
import pickle
UNK = 'UNK'
# This file contains the dataset in a useful way. We populate a list of Trees to train/test our Neural Nets such that each Tree contains any number of Node objects. # The best way to get a feel for how these objects are used in the program is to drop pdb.set_trace() in a few places throughout the codebase
# to see how the trees are used.. look where loadtrees() is called etc.. class Node: # a node in the tree
def __init__(self,label,word=None):
self.label = label
self.word = word # NOT a word vector, but index into L.. i.e. wvec = L[:,node.word]
self.parent = None # reference to parent
self.left = None # reference to left child
self.right = None # reference to right child
self.isLeaf = False # true if I am a leaf (could have probably derived this from if I have a word)
self.fprop = False # true if we have finished performing fowardprop on this node (note, there are many ways to implement the recursion.. some might not require this flag)
self.hActs1 = None # h1 from the handout
self.hActs2 = None # h2 from the handout (only used for RNN2)
self.probs = None # yhat class Tree: def __init__(self,treeString,openChar='(',closeChar=')'):
tokens = []
self.open = '('
self.close = ')'
for toks in treeString.strip().split():
tokens += list(toks)
self.root = self.parse(tokens) def parse(self, tokens, parent=None):
assert tokens[0] == self.open, "Malformed tree"
assert tokens[-1] == self.close, "Malformed tree" split = 2 # position after open and label
countOpen = countClose = 0 if tokens[split] == self.open:
countOpen += 1
split += 1
# Find where left child and right child split
while countOpen != countClose:
if tokens[split] == self.open:
countOpen += 1
if tokens[split] == self.close:
countClose += 1
split += 1 # New node
node = Node(int(tokens[1])) # zero index labels node.parent = parent # leaf Node
if countOpen == 0:
node.word = ''.join(tokens[2:-1]).lower() # lower case?
node.isLeaf = True
return node node.left = self.parse(tokens[2:split],parent=node)
node.right = self.parse(tokens[split:-1],parent=node) return node def leftTraverse(root,nodeFn=None,args=None):
"""
Recursive function traverses tree
from left to right.
Calls nodeFn at each node
"""
nodeFn(root,args)
if root.left is not None:
leftTraverse(root.left,nodeFn,args)
if root.right is not None:
leftTraverse(root.right,nodeFn,args) def countWords(node,words):
if node.isLeaf:
words[node.word] += 1 def clearFprop(node,words):
node.fprop = False def mapWords(node,wordMap):
if node.isLeaf:
if node.word not in wordMap:
node.word = wordMap[UNK]
else:
node.word = wordMap[node.word] def loadWordMap():
with open('wordMap.bin','rb') as fid:
return pickle.load(fid) def buildWordMap():
"""
Builds map of all words in training set
to integer values.
""" file = 'trees/train.txt'
print("Reading trees to build word map..")
with open(file,'r') as fid:
trees = [Tree(l) for l in fid.readlines()] print("Counting words to give each word an index..") words = collections.defaultdict(int)
for tree in trees:
leftTraverse(tree.root,nodeFn=countWords,args=words) wordMap = dict(zip(words.keys(),range(len(words))))
wordMap[UNK] = len(words) # Add unknown as word print("Saving wordMap to wordMap.bin")
with open('wordMap.bin','wb') as fid:
pickle.dump(wordMap,fid) def loadTrees(dataSet='train'):
"""
Loads training trees. Maps leaf node words to word ids.
"""
wordMap = loadWordMap()
file = 'trees/%s.txt'%dataSet
print("Loading %sing trees.."%dataSet)
with open(file,'r') as fid:
trees = [Tree(l) for l in fid.readlines()]
for tree in trees:
leftTraverse(tree.root,nodeFn=mapWords,args=wordMap)
return trees if __name__=='__main__':
buildWordMap() train = loadTrees() print("Now you can do something with this list of trees!")

更详细的代码请参考github:

https://github.com/weizhenzhao/cs224d_problem_set3