LCD与ARM,具体

时间:2023-03-09 19:49:11
LCD与ARM,具体

一  实验内容简要描写叙述

1.实验目的

学会驱动程序的编写方法,配置S3C2410的LCD驱动,以及在LCD屏上显示包含bmp和jpeg两种格式的图片

2.实验内容

 (1)分析S3c2410实验箱LCD以及LCD控制器的硬件原理,据此找出对应的硬件设置參数,參考xcale实验箱关于lcd的设置,完毕s3c2410实验箱LCD的设置

(2)在LCD上显示一张BMP图片或JPEG图片

3.实验条件(软硬件环境)

PC机、S3C2410开发板、PXA255开发板

二  实验原理

1.  S3C2410内置LCD控制器分析

1.1  S3C2410 LCD控制器

一 块LCD屏显示图像,不但须要LCD驱动器,还须要有对应的LCD控制器。通常LCD驱动器会以COF/COG的形式与LCD 玻璃基板制作在一起,而LCD控制器则由外部电路来实现。而S3C2410内部已经集成了LCD控制器,因此能够非常方便地去控制各种类型的LCD屏,例 如:STN和TFT屏。S3C2410 LCD控制器的特性例如以下:

(1)STN屏

支持3种扫描方式:4bit单扫、4位双扫和8位单扫

支持单色、4级灰度和16级灰度屏

支持256色和4096色彩色STN屏(CSTN)

支持分辩率为640*480、320*240、160*160以及其他规格的多种LCD

(2)TFT屏

支持单色、4级灰度、256色的调色板显示模式

支持64K和16M色非调色板显示模式

支持分辩率为640*480,320*240及其他多种规格的LCD

对于控制TFT屏来说,除了要给它送视频资料(VD[23:0])以外,还有下面一些信号是不可缺少的,各自是:

VSYNC(VFRAME) :帧同步信号

HSYNC(VLINE) :行同步信号

VCLK :像数时钟信号

VDEN(VM) :数据有效标志信号

因为本项目所用的S3C2410上的LCD是TFT屏,而且TFT屏将是今后应用的主流,因此接下来,重点环绕TFT屏的控制来进行。

图1.1是S3C2410内部的LCD控制器的逻辑示意图:

LCD与ARM,具体

图1.1

REGBANK 是LCD控制器的寄存器组,用来对LCD控制器的各项參数进行设置。而 LCDCDMA 则是LCD控制器专用的DMA信道,负责将视频资料从系统总线(System Bus)上取来,通过 VIDPRCS 从VD[23:0]发送给LCD屏。同一时候 TIMEGEN 和 LPC3600 负责产生 LCD屏所须要的控制时序,比如VSYNC、HSYNC、VCLK、VDEN,然后从 VIDEO MUX 送给LCD屏。



1.2  TFT屏时序分析

图 1.2是TFT屏的典型时序。当中VSYNC是帧同步信号,VSYNC每发出1个脉冲,都意味着新的1屏视频资料開始发送。而HSYNC为行同步信号,每 个HSYNC脉冲都表明新的1行视频资料開始发送。而VDEN则用来标明视频资料的有效,VCLK是用来锁存视频资料的像数时钟。

而且在帧同步以 及行同步的头尾都必须留有回扫时间,比如对于VSYNC来说前回扫时间就是(VSPW+1)+(VBPD+1),后回扫时间就是(VFPD +1);HSYNC亦类同。这种时序要求是当初CRT显示器因为电子枪偏转须要时间,但后来成了实际上的工业标准,乃至于后来出现的TFT屏为了在时序 上于CRT兼容,也採用了这种控制时序。

LCD与ARM,具体

图1.2

S3C2410实验箱上的LCD是一款3.5寸TFT真彩LCD屏,分辩率为240*320,下图为该屏的时序要求。

LCD与ARM,具体

图1.3

通过对照图1.2和图1.3,我们不难看出:

VSPW+1=2 -> VSPW=1

VBPD+1=2 -> VBPD=1

LINVAL+1=320-> LINVAL=319

VFPD+1=3 -> VFPD=2

HSPW+1=4 -> HSPW=3

HBPD+1=7 -> HBPW=6

HOZVAL+1=240-> HOZVAL=239

HFPD+1=31 -> HFPD=30

以上各參数,除了LINVAL和HOZVAL直接和屏的分辩率有关,其他的參数在实际操作过程中应以上面的为參考,不应偏差太多。



1.3  LCD控制器主要寄存器功能具体解释

LCD与ARM,具体  

图1.4

LINECNT :当前行扫描计数器值,标明当前扫描到了多少行。

CLKVAL :决定VCLK的分频比。LCD控制器输出的VCLK是直接由系统总线(AHB)的工作频率HCLK直接分频得到的。做为240*320的TFT屏,应保证得出的VCLK在5~10MHz之间。

MMODE :VM信号的触发模式(仅对STN屏有效,对TFT屏无意义)。

PNRMODE :选择当前的显示模式,对于TFT屏而言,应选择[11],即TFT LCD panel。

BPPMODE :选择色彩模式,对于真彩显示而言,选择16bpp(64K色)就可以满足要求。

ENVID :使能LCD信号输出。

LCD与ARM,具体  

图1.5

VBPD , LINEVAL , VFPD , VSPW 的各项含义已经在前面的时序图中得到体现。

LCD与ARM,具体

图1.6

HBPD , HOZVAL , HFPD 的各项含义已经在前面的时序图中得到体现。

LCD与ARM,具体

图1.7

HSPW 的含义已经在前面的时序图中得到体现。

MVAL 仅仅对 STN屏有效,对TFT屏无意义。

HSPW 的含义已经在前面的时序图中得到体现,这里不再赘述。

MVAL 仅仅对 STN屏有效,对TFT屏无意义。 

LCD与ARM,具体

LCD与ARM,具体 

图1.8

VSTATUS :当前VSYNC信号扫描状态,指明当前VSYNC同步信号处于何种扫描阶段。

HSTATUS :当前HSYNC信号扫描状态,指明当前HSYNC同步信号处于何种扫描阶段。

BPP24BL :设定24bpp显示模式时,视频资料在显示缓冲区中的排列顺序(即低位有效还是高位有效)。对于16bpp的64K色显示模式,该设置位无意义。

FRM565 :对于16bpp显示模式,有2中形式,一种是RGB=5:5:5:1,还有一种是5:6:5。后一种模式最为经常使用,它的含义是表示64K种色彩的16bit RGB资料中,红色(R)占了5bit,绿色(G)占了6bit,兰色(B)占了5bit

INVVCLK , INVLINE , INVFRAME , INVVD :通过前面的时序图,我们知道,CPU的LCD控制器输出的时序默认是正脉冲,而LCD须要VSYNC(VFRAME)、VLINE(HSYNC)均为负 脉冲,因此 INVLINE 和 INVFRAME 必须设为“1 ”,即选择反相输出。

INVVDEN , INVPWREN , INVLEND 的功能同前面的类似。

PWREN 为LCD电源使能控制。在CPU LCD控制器的输出信号中,有一个电源使能管脚LCD_PWREN,用来做为LCD屏电源的开关信号。

ENLEND 对普通的TFT屏无效,能够不考虑。

BSWP 和 HWSWP 为字节(Byte)或半字(Half-Word)交换使能。因为不同的GUI对FrameBuffer(显示缓冲区)的管理不同,必要时须要通过调整 BSWP 和 HWSWP 来适应GUI。

2.  Linux 驱动

2.1  FrameBuffer

Linux 是工作在保护模式下,所以用户态进程是无法像DOS那样使用显卡BIOS里提供的中断调用来实现直接写屏,Lin仿显卡的功能,将显ux抽象出 FrameBuffer这个设备来供用户态进程实现直接写屏。Framebuffer机制模卡硬件结构抽象掉,能够通过Framebuffer的读写直接 对显存进行操作。用户能够将Framebuffer看成是显示内存的一个映像,将其映射到进程地址空间之后,就能够直接进行读写操作,而写操作能够马上反 应在屏幕上。这样的操作是抽象的,统一的。用户不必关心物理显存的位置、换页机制等等详细细节。这些都是由Framebuffer设备驱动来完毕的。

在 Linux系统下,FrameBuffer的基本的结构如图所看到的。Linux为了开发FrameBuffer程序的方便,使用了分层结构。fbmem.c 处于Framebuffer设备驱动技术的中心位置。它为上层应用程序提供系统调用,也为下一层的特定硬件驱动提供接口;那些底层硬件驱动须要用到这儿的 接口来向系统内核注冊它们自己。

LCD与ARM,具体 

fbmem.c 为全部支持FrameBuffer的设备驱动提供了通用的接口,避免反复工作。下将介绍fbmem.c基本的一些数据结构。



2.2  数据结构

2.2.1  Linux FrameBuffer的数据结构

在FrameBuffer中,fb_info能够说是最重要的一个结构体,它是Linux为帧缓冲设备定义的驱动层接口。它不仅包括了底层函数,并且还有记录设备状态的数据。每一个帧缓冲设备都与一个fb_info结构相相应。fb_info的主要成员例如以下

struct fb_info {

int node;

struct fb_var_screeninfo var; /* Current var */

struct fb_fix_screeninfo fix;  /* Current fix */

struct fb_videomode *mode; /* current mode */



struct fb_ops *fbops;

struct device *device;   /* This is the parent */

struct device *dev;   /* This is this fb device */



char __iomem *screen_base; /* Virtual address */

unsigned long screen_size; /* Amount of ioremapped VRAM or 0 */

…………

};

其 中node成员域标示了特定的FrameBuffer,实际上也就是一个FrameBuffer设备的次设备号。fb_var_screeninfo结构 体成员记录用户可改动的显示控制器參数,包含屏幕分辨率和每一个像素点的比特数。fb_var_screeninfo中的xres定义屏幕一行有多少个点, yres定义屏幕一列有多少个点, bits_per_pixel定义每一个点用多少个字节表示。其它域见下面代码凝视。

struct fb_var_screeninfo {

__u32 xres;   /* visible resolution */

__u32 yres;

__u32 xoffset;  /* offset from virtual to visible */

__u32 yoffset;  /* resolution */

__u32 bits_per_pixel; /* bits/pixel */

__u32 pixclock;  /* pixel clock in ps (pico seconds) */

__u32 left_margin; /* time from sync to picture */

__u32 right_margin; /* time from picture to sync */

__u32 hsync_len;  /* length of horizontal sync */

__u32 vsync_len;  /* length of vertical sync */

…………

};

在fb_info结构体中,fb_fix_screeninfo中记录用户不能改动的显示控制器的參数,如屏幕缓冲区的物理地址,长度。当对帧缓冲设备进行映射操作的时候,就是从fb_fix_screeninfo中取得缓冲区物理地址的。

struct fb_fix_screeninfo {

char id[16];        /* identification string eg "TT Builtin" */

unsigned long smem_start;    /* Start of frame buffer mem (physical address) */

__u32 smem_len;        /* Length of frame buffer mem */

unsigned long mmio_start;    /* Start of Mem Mapped I/O(physical address) */

__u32 mmio_len;      /* Length of Memory Mapped I/O  */

…………

};

fb_info 另一个非常重要的域就是fb_ops。它是提供给底层设备驱动的一个接口。通常我们编写字符驱动的时候,要填写一个file_operations结构 体,并使用register_chrdev()注冊之,以告诉Linux怎样操控驱动。当我们编写一个FrameBuffer的时候,就要按照Linux FrameBuffer编程的套路,填写fb_ops结构体。这个fb_ops也就相当于通常的file_operations结构体。

struct fb_ops {

int (*fb_open)(struct fb_info *info, int user);

int (*fb_release)(struct fb_info *info, int user);

ssize_t (*fb_read)(struct file *file, char __user *buf, size_t count, loff_t *ppos);

ssize_t (*fb_write)(struct file *file, const char __user *buf, size_t count,

loff_t *ppos);

int (*fb_set_par)(struct fb_info *info);

int (*fb_setcolreg)(unsigned regno, unsigned red, unsigned green,

unsigned blue, unsigned transp, struct fb_info *info);

int (*fb_setcmap)(struct fb_cmap *cmap, struct fb_info *info)

int (*fb_mmap)(struct fb_info *info, struct vm_area_struct *vma);

……………

}

上面的结构体,依据函数的名字就能够看出它的作用,这里不在一一说明。下图给出了Linux FrameBuffer的整体结构,作为这一部分的总结。

LCD与ARM,具体

图2.2



2.2.2  S3C2410中LCD的数据结构

在S3C2410的LCD设备驱动中,定义了s3c2410fb_info来标识一个LCD设备,结构体例如以下:

struct s3c2410fb_info {

struct fb_info  *fb;

struct device  *dev;

struct s3c2410fb_mach_info *mach_info;

struct s3c2410fb_hw regs;  /* LCD Hardware Regs */

dma_addr_t  map_dma;  /* physical */

u_char *   map_cpu;  /* virtual */

u_int   map_size;

/* addresses of pieces placed in raw buffer */

u_char *   screen_cpu;  /* virtual address of buffer */

dma_addr_t  screen_dma;  /* physical address of buffer */

…………

};

成 员变量fb指向我们上面所说明的fb_info结构体,代表了一个FrameBuffer。dev则表示了这个LCD设备。 map_dma,map_cpu,map_size这三个域向了开辟给LCD DMA使用的内存地址。screen_cpu,screen_dma指向了LCD控制器映射的内存地址。另外regs标识了LCD控制器的寄存器。

struct s3c2410fb_hw {

unsigned long lcdcon1;

unsigned long lcdcon2;

unsigned long lcdcon3;

unsigned long lcdcon4;

unsigned long lcdcon5;

};

这个寄存器和硬件的寄存器一一相应,主要作为实际寄存器的映像,以便程序使用。

这个s3c2410fb_info中另一个s3c2410fb_mach_info成员域。它存放了和体系结构相关的一些信息,如时钟、LCD设备的GPIO口等等。这个结构体定义为

struct s3c2410fb_mach_info {

unsigned char fixed_syncs; /* do not update sync/border */

int type;      /* LCD types */

int width;      /* Screen size */

int height;

struct s3c2410fb_val xres;  /* Screen info */

struct s3c2410fb_val yres;

struct s3c2410fb_val bpp;

struct s3c2410fb_hw  regs;  /* lcd configuration registers */

/* GPIOs */

unsigned long gpcup;

unsigned long gpcup_mask;

unsigned long gpccon;

unsigned long gpccon_mask;

………… 

};

LCD与ARM,具体  

图2.3

上图表示了S3C2410驱动的总体结构,反映了结构体之间的相互关系



2.3  主要代码结构以及关键代码分析

2.3.1  FrameBuffer驱动的统一管理

fbmem.c 实现了Linux FrameBuffer的中间层,不论什么一个FrameBuffer驱动,在系统初始化时,必须向fbmem.c注冊,即须要调用 register_framebuffer()函数,在这个过程中,设备驱动的信息将会存放入名称为registered_fb数组中,这个数组定义为

struct fb_info *registered_fb[FB_MAX];

int num_registered_fb;

它是类型为fb_info的数组,另外num_register_fb则存放了注冊过的设备数量。

我们分析一下register_framebuffer的代码。

int register_framebuffer(struct fb_info *fb_info)

{

int i;

struct fb_event event;

struct fb_videomode mode;

if (num_registered_fb == FB_MAX) return -ENXIO; /* 超过最大数量 */

num_registered_fb++;

for (i = 0 ; i < FB_MAX; i++)

if (!registered_fb[i]) break;     /* 找到空余的数组空间 */

fb_info->node = i;



fb_info->dev = device_create(fb_class, fb_info->device,

MKDEV(FB_MAJOR, i), "fb%d", i);  /* 为设备建立设备节点 */

if (IS_ERR(fb_info->dev)) {

…………

} else{

fb_init_device(fb_info);      /* 初始化改设备 */

}

…………

return 0;

}

从 上面的代码可知,当FrameBuffer驱动进行注冊的时候,它将驱动的fb_info结构体记录到全局数组registered_fb中,并动态建立 设备节点,进行设备的初始化。注意,这里建立的设备节点的次设备号就是该驱动信息在registered_fb存放的位置,即数组下标i 。在完毕注冊之后,fbmem.c就记录了驱动的fb_info。这样我们就有可能实现fbmem.c对所有FrameBuffer驱动的统一处理。



2.3.2  实现消息的分派

fbmem.c实现了对系统所有FrameBuffer设备的统一管理。当用户尝试使用一个特定的FrameBuffer时,fbmem.c怎么知道该调用那个特定的设备驱动呢?

我 们知道,Linux是通过主设备号和次设备号,对设备进行唯一标识。不同的FrameBuffer设备向fbmem.c注冊时,程序分配给它们的主设备号 是一样的,而次设备号是不一样的。于是我们就能够通过用户指明的次设备号,来认为详细该调用哪一个FrameBuffer驱动。以下通过分析 fbmem.c的fb_open()函数来说明。(注:一般我们写FrameBuffer驱动不须要实现open函数,这里仅仅是说明函数流程。)

static int fb_open(struct inode *inode, struct file *file){

int fbidx = iminor(inode);

struct fb_info *info;

int res;

/* 得到真正驱动的函数指针 */

if (!(info = registered_fb[fbidx])) return -ENODEV; 

if (info->fbops->fb_open) {

res = info->fbops->fb_open(info,1); //调用驱动的open()

if (res)  module_put(info->fbops->owner);

}

return res;

}

当 用户打开一个FrameBuffer设备的时,将调用这里的fb_open()函数。传进来的inode就是欲打开设备的设备号,包含主设备和次设备号。 fb_open函数首先通过iminor()函数取得次设备号,然后查全局数组registered_fb得到设备的fb_info信息,而这里面存放了 设备的操作函数集fb_ops。这样,我们就能够调用详细驱动的fb_open() 函数,实现open的操作。以下给出了一个LCD驱动的open() 函数的调用流程图,用以说明上面的步骤。

LCD与ARM,具体 

图2.4



2.3.3  开发板S3C2410 LCD驱动的流程

(1)在mach-smdk2410.c中,定义了初始的LCD參数。注意这是个全局变量。

static struct s3c2410fb_mach_info smdk2410_lcd_cfg = {

.regs= {

.lcdcon1 = S3C2410_LCDCON1_TFT16BPP |

S3C2410_LCDCON1_TFT|

S3C2410_LCDCON1_CLKVAL(7),

......

},

.width  = 240,   .height = 320,

.xres = {.min = 240,.max= 240,.defval = 240},

.bpp   = {.min = 16,  .max= 16,  .defval = 16},

......

};

(2)内核初始化时候调用s3c2410fb_probe函数。以下分析这个函数的做的工作。首先先动态分配s3c2410fb_info空间。

fbinfo = framebuffer_alloc(sizeof(struct s3c2410fb_info),&pdev->dev);

把域mach_info指向mach-smdk2410.c中的smdk2410_lcd_cfg 。

info->mach_info = pdev->dev.platform_data;

设置fb_info域的fix,var,fops字段。



fbinfo->fix.type  =  FB_TYPE_PACKED_PIXELS;

fbinfo->fix.type_aux     = 0;

fbinfo->fix.xpanstep     = 0;



fbinfo->var.nonstd     = 0;

fbinfo->var.activate   = FB_ACTIVATE_NOW;

fbinfo->var.height     = mach_info->height;

fbinfo->var.width     = mach_info->width;



fbinfo->fbops      = &s3c2410fb_ops;

……

该函数调用s3c2410fb_map_video_memory()申请DMA内存,即显存。



fbi->map_size = PAGE_ALIGN(fbi->fb->fix.smem_len + PAGE_SIZE);

fbi->map_cpu  = dma_alloc_writecombine(fbi->dev, fbi->map_size,

&fbi->map_dma, GFP_KERNEL);



fbi->map_size = fbi->fb->fix.smem_len;

…….

设置控制寄存器,设置硬件寄存器。



memcpy(&info->regs, &mach_info->regs,sizeof(info->regs));

info->regs.lcdcon1 &= ~S3C2410_LCDCON1_ENVID;

……….

调用函数s3c2410fb_init_registers(),把初始值写入寄存器。



writel(fbi->regs.lcdcon1, S3C2410_LCDCON1);

writel(fbi->regs.lcdcon2, S3C2410_LCDCON2);



(3)当用户调用mmap()映射内存的时候,Fbmem.c把刚才设置好的显存区域映射给用户。

start = info->fix.smem_start;

len = PAGE_ALIGN( (start & ~PAGE_MASK) + info->fix.smem_len);

io_remap_pfn_range(vma, vma->vm_start, off >> PAGE_SHIFT,

vma->vm_end - vma->vm_start,vma->vm_page_prot);

……

这样就完毕了驱动初始化到用户调用的整个过程。

3.  BMP和JPEG图形显示程序

3.1  在LCD上显示BMP或JPEG图片的主流程图

首先,在程序開始前。要在nfs/dev文件夹下创建LCD的设备结点,设备名fb0,设备类型为字符设备,主设备号为29,次设备号为0。命令例如以下:

mknod fb0 c 29 0

在 LCD上显示图象的主流程图如图3.1所看到的。程序一開始要调用open函数打开设备,然后调用ioctl获取设备相关信息,接下来就是读取图形文件数据, 把图象的RGB值映射到显存中,这部分是图象显示的核心。对于JPEG格式的图片,要先经过JPEG解码才干得到RGB数据,本项目中直接才用现成的 JPEG库进行解码。对于bmp格式的图片,则能够直接从文件中面提取其RGB数据。要从一个bmp文件中面把图片数据阵列提取出来,首先必须知道bmp 文件的格式。以下来具体介绍bmp文件的格式。

LCD与ARM,具体

图3.1



3.2  bmp位图格式分析

位图文件可看成由四个部分组成:位图文件头、位图信息头、彩色表和定义位图的字节阵列。如图3.2所看到的。

LCD与ARM,具体

图3.2

文件头中各个段的地址及其内容如图3.3。

LCD与ARM,具体

图3.3

位图文件头数据结构包括BMP图象文件的类型,显示内容等信息。它的数据结构例如以下定义:

Typedef struct



int  bfType;//表明位图文件的类型,必须为BM

long bfSize;//表明位图文件的大小,以字节为单位

int  bfReserved1;//属于保留字,必须为本0

int  bfReserved2;//也是保留字,必须为本0

long bfOffBits;//位图阵列的起始位置,以字节为单位

}  BITMAPFILEHEADER;

图3.4  位图文件头的数据结构

(2)信息头中各个段的地址及其内容如图3.5所看到的。

LCD与ARM,具体

图3.5

位图信息头的数据结构包括了有关BMP图象的宽,高,压缩方法等信息,它的C语言数据结构如图3.6所看到的。

Typedef struct {

long  biSize; //指出本数据结构所须要的字节数

long  biWidth;//以象素为单位,给出BMP图象的宽度

long  biHeight;//以象素为单位,给出BMP图象的高度

int    biPlanes;//输出设备的位平面数,必须置为1

int    biBitCount;//给出每一个象素的位数

long  biCompress;//给出位图的压缩类型

long  biSizeImage;//给出图象字节数的多少

long  biXPelsPerMeter;//图像的水平分辨率

long  biYPelsPerMeter;//图象的垂直分辨率

long  biClrUsed;//调色板中图象实际使用的颜色素数

long  biClrImportant;//给出重要颜色的索引值

} BITMAPINFOHEADER;

图3.6  BITMAPINFOHEADER数据结构



(3)对于象素小于或等于16位的图片,都有一个颜色表用来给图象数据阵列提供颜色索引,当中的每块数据都以B、G、R的顺序排列,另一个是reserved保留位。而在图形数据区域存放的是各个象素点的索引值。它的C语言结构如图3.7所看到的。

LCD与ARM,具体

图3.7  颜色表数据结构

(4)对于24位和32位的图片,没有彩色表,他在图象数据区里直接存放图片的RGB数据,当中的每一个象素点的数据都以B、G、R的顺序排列。每一个象素点的数据结构如图3.8所看到的。

LCD与ARM,具体

图3.8  图象数据阵列的数据结构

(5)因为图象数据阵列中的数据是从图片的最后一行開始往上存放的,因此在显示图象时,是从图象的左下角開始逐行扫描图象,即从左到右,从下到上。

(6) 对S3C2410或PXA255开发板上的LCD来说,他们每一个象素点所占的位数为16位,这16位按B:G:R=5:6:5的方式分,当中B在最高 位,R在最低位。而从bmp图象得到的R、G、B数据则每一个数据占8位,合起来一共24位,因此须要对该R、G、B数据进行移位组合成一个16位的数据。 移位方法例如以下:

b >>= 3; g >>= 2; r >>= 3;

RGBValue = ( r<<11 | g << 5 | b);

基于以上分析,提取各种类型的bmp图象的流程如图3.9所看到的

LCD与ARM,具体

图 3.9



3.3  实现显示随意大小的图片

开发板上的LCD屏的大小是固定的,S3C2410上的LCD为:240*320,PXA255上的为:640*480。比屏幕小的图片在屏上显示当然没问题,可是假设图片比屏幕大呢?这就要求我们通过某种算法对图片进行缩放。

缩放的基本思想是将图片分成若干个方块,对每一个方块中的R、G、B数据进行取平均,得到一个新的R、G、B值,这个值就作为该方块在LCD屏幕上的映射。

缩放的算法描写叙述例如以下:

(1)、计算图片大小与LCD屏大小的比例,以及方块的大小。为了适应各种屏幕大小,这里并不直接给lcd_width和lcd_height赋值为240和320。而是调用标准的接口来获取有关屏幕的參数。详细例如以下:

// Get variable screen information

if (ioctl(fbfd, FBIOGET_VSCREENINFO, &vinfo)) {

printf("Error reading variable information. ");

exit(3);

}

unsigned int lcd_width=vinfo.xres;

unsigned int lcd_height=vinfo.yres;



计算比例:

widthScale=bmpi->width/lcd_width;

heightScale=bmpi->height/lcd_height;

本程序中方块的大小以例如以下的方式确定:

unsigned int paneWidth=

unsigned int paneHeight= ;

符号 代表向上取整。

(2)、 从图片的左上角開始,以(i* widthScale,j* heightScale)位起始点,以宽paneWidth 高paneHeight为一个小方块,对该方块的R、G、B数值分别取平均,得到映射点的R、G、B值,把该点作为要在LCD上显示的第(i , j)点存储起来。

这部分的程序例如以下:

//-------------取平均--------

for( i=0;i<now_height;i++)

{

for(j=0;j<now_width;j++)

{   

color_sum_r=0;

color_sum_g=0;

color_sum_b=0;

for(m=i*heightScale;m<i*heightScale+paneHeight;m++)

{

for(n=j*widthScale;n<j*widthScale+paneWidth;n++)

{

color_sum_r+=pointvalue[m][n].r;

color_sum_g+=pointvalue[m][n].g;

color_sum_b+=pointvalue[m][n].b;

}

}

RGBvalue_256->r=div_round(color_sum_r,paneHeight*paneWidth);

RGBvalue_256->g=div_round(color_sum_g,paneHeight*paneWidth);

RGBvalue_256->b=div_round(color_sum_b,paneHeight*paneWidth);

}

}

3.4  图片数据提取及显示的总流程

通过以上的分析,整个图片数据提取及显示的总流程如图3.10 所看到的。

LCD与ARM,具体 

图 3.10

三  实验过程与结果

1. Linux 源码的改动

首先改动arch/arm/mach-smdk2410.c文件,增加下面代码。

static struct s3c2410fb_mach_info smdk2440_lcd_cfg __initdata = {

.regs = {

.lcdcon1 = S3C2410_LCDCON1_TFT16BPP |

S3C2410_LCDCON1_TFT |

S3C2410_LCDCON1_CLKVAL(7),



.lcdcon2 = S3C2410_LCDCON2_VBPD(4) |

S3C2410_LCDCON2_LINEVAL(319) |

S3C2410_LCDCON2_VFPD(1) |

S3C2410_LCDCON2_VSPW(1),



.lcdcon3 = S3C2410_LCDCON3_HBPD(26) |

S3C2410_LCDCON3_HOZVAL(239) |

S3C2410_LCDCON3_HFPD(30),



.lcdcon4 = S3C2410_LCDCON4_HSPW(13) |

S3C2410_LCDCON4_MVAL(13),



.lcdcon5 = S3C2410_LCDCON5_FRM565 |

S3C2410_LCDCON5_INVVLINE |

S3C2410_LCDCON5_INVVFRAME |

S3C2410_LCDCON5_PWREN |

S3C2410_LCDCON5_HWSWP,

},



.lpcsel  = ((0xCE6) & ~7) | 1<<4,

.width  = 240,

.height  = 320,



.xres  = {

.min = 240,

.max = 240,

.defval = 240,

},

.yres  = {

.min = 320,

.max = 320,

.defval = 320,

},

.bpp  = {

.min = 16,

.max = 16,

.defval = 16,

},

};

在函数smdk2410_machine_init()函数中增加LCD的初始化代码,见下

static void __init smdk2410_machine_init(void){

s3c24xx_fb_set_platdata(&smdk2440_lcd_cfg);

smdk_machine_init();

}

2.编译内核,产生zImage文件,放入tftp文件夹下。

3.在nfs的dev文件夹下建立FrameBuffer的设备节点,使用命令:

mknod fb0 c 29 0

4.启动开发板,载入内核和文件系统。

5.编写LCD的应用程序,程序见附录。

6.採用arm-linux-gcc 编译应用程序,产生可运行文件,放入nfs文件夹中。

7.在开发板上执行编译好的可执行文件,便可。

8.下图是BMP位图显示程序,在S3C2410上的执行结果。

LCD与ARM,具体

四  实验心得体会

1. LCD驱动的主要问题是没有LCD屏的文档,我们找不到它的那些參数值,后来仅仅能參照Linux源代码里面的其它LCD屏的參数进行实验。

2. 在 驱动差错的过程中,我们採用跟踪打印的方法进行调试。刚開始的时候,内核打印出一行找不到LCD设备。我们定位到输出这行提示的代码处,进行反向跟踪。发 现传给函数的设备指针为空,于是往上排查,最终发现源码中未定义LCD的设备信息。于是驱动问题也就顺利攻克了。

3. 原来一直以为,仅仅要LCD驱动工作正常了,内核起来的时候,液晶屏会显示出Logo。当时搞了非常久一直没有,还以为是驱动的问题。后来随便写了一个LCD应用程序,居然能用。

4. 在调试过程应用程序中发现,在读取文件头的时候,假设直接定义一个bitmapfileheader为它动态分配内存:

*bmph=(bitmapfileheader*)malloc(sizeof(bitmapfileheader));

然 后用fread((char*)bmph,sizeof(bitmapfileheader),1,f)把文件头一次性读出来,读出来的文件头是错误的, 经过调试发现原因是bitmapfileheader这个结构体中的type属性原本应该占2字节,可是被编译器在分配内存的时候进行了内存对齐的优化, 给他分配了4个字节的空间,造成读文件的错误。因此在编程中要特别注意内存对齐的影响。

typedef struct

{

WORD    type;(被优化)

DWORD bfsize;

DWORD reserved;

DWORD offbits;

}  bitmapfileheader;

5. 在 嵌入式应用程序的移植过程中,我们原来觉得ARM和PC机大小尾顺序是不同的,因此在应用程序中,也对这个区别进行了处理。当时,在调试过程中发现,PC 机程序能够直接移植到ARM上,不须要不论什么修改。可是我们的程序,的确存在会产生大小尾问题代码(在使用fread()读入时)。这到底是为什么?有人 说,ARM是能够设置大小尾顺序的。后来这个问题也没有深究下去。