Codeforces 955F Heaps - 动态规划

时间:2023-03-09 18:10:39
Codeforces 955F Heaps - 动态规划

题目传送门

  传送点I

  传送点II

  传送点III

题目大意

  给定一棵以1为根的树,定义$dp_{k}(u)$表示在$u$的子树内存在的深度最大的满k叉树的深度,求$\sum_{u = 1}^{n}\sum_{k = 1}^{n}dp_{k}(u)$。

  以某个点$x$为根存在一棵深度$m$的满$k$叉树是指,它满足下面任意一条:

  1. $m = 1$。
  2. 当$m \neq 1$时,$x$存在$k$个子节点,分别以它们为根存在一棵深度为$m - 1$的满$k$叉树。

  先讲讲我的挂掉的做法。

  因为是满$k$叉树,所以$dp_{k}(u)\leqslant \log_{k}n, k > 1$,由此推出当$k \geqslant \sqrt{n}$时,$dp_{k}(u) \leqslant 2$。

  所以有了以下做法:

  • 当$1\leqslant k < \sqrt{n}$时,我们进行$O(n)$的动态规划。设$f_{u}$表示以点$u$为根,存在的深度最大的满$k$叉树的深度。转移取子节点中第$k$大的$f$值在加1,不存在就是1。当然这里找$k$大要用 nth_element 。
  • 当$k \geqslant \sqrt{n}$时,直接通过度数计算。

  看起来$O(n\sqrt{n})$非常地优秀,题解也说Codeforces 955F Heaps - 动态规划

  然而实际上:

Codeforces 955F Heaps - 动态规划

  因为$dp_{k}(u) \leqslant \log_{k}n$,所以当$k > 1$的时候$dp_{k} \leqslant \log_{2}n$。然后反转值和下标,考虑什么时候取每个值。

  我们同样注意到$dp_{k}$的某些不严格单调的性质。

  • 如果$u$是$v$的父节点,那么$dp_{k}(u) \geqslant dp_{k}(v)$
  • 若$a\leqslant b$,则$dp_{a}(u) \geqslant dp_{b}(u)$。

  设$h_{k, i}$表示以$i$为根存在的最深的满$k$叉树的深度。

  如果某个$h$值被增大,那么我就沿着它的父节点向上跳去更新$dp$值,直到某个点已经不能更新。这样能够保证这一部分时间复杂度是$O(n\log n)$。

  因为要将值增大,那就从大到小考虑每个$k$。

  同时我们设$f_{i, j}$表示使得$h_{k}(i) \geqslant j$ 成立的最大的$j$。

  转移很简单,我们找最大的$k$,使得子节点中第$k$大的$f_{s, j - 1}\geqslant k$。这个可以排个序然后直接扫。

  然后用刚刚的方法更新$\Delta answer$,然后就做完了。

  总时间复杂度$O(n\log_{2}^{2} n)$。

Code

 /**
* Codeforces
* Problem#955F
* Accepted
* Time: 327ms
* Memory: 66900k
*/
#include <bits/stdc++.h>
#ifndef WIN32
#define Auto "%lld"
#else
#define Auto "%I64d"
#endif
using namespace std;
typedef bool boolean;
#define ll long long
#define pii pair<int, int>
#define fi first
#define sc second const int N = 3e5 + , bzmax = ; int n;
int h[N];
int f[N][bzmax];
int buf[N], par[N];
vector<pii> upd[N];
vector<int> g[N];
ll res;
int dres; inline void init() {
scanf("%d", &n);
for (int i = , u, v; i < n; i++) {
scanf("%d%d", &u, &v);
g[u].push_back(v);
g[v].push_back(u);
}
} int dp(int p, int fa) {
int rt = ;
par[p] = fa; for (int i = ; i < (signed) g[p].size(); i++) {
int e = g[p][i];
if (e ^ fa)
rt = max(rt, dp(e, p));
} f[p][] = n;
for (int t = ; t < bzmax; t++) {
int tp = ;
for (int i = ; i < (signed) g[p].size(); i++) {
int e = g[p][i];
if ((e ^ fa) && f[e][t - ])
buf[++tp] = f[e][t - ];
} sort(buf + , buf + tp + , greater<int>()); for (int i = tp; i && !f[p][t]; i--)
if (buf[i] >= i)
f[p][t] = i;
if (f[p][t] > )
upd[f[p][t]].push_back(pii(p, t));
} res += rt + ;
return rt + ;
} void update(int p, int v) {
while (p) {
if (v <= h[p])
break;
dres += v - h[p];
h[p] = v, p = par[p];
}
} inline void solve() {
dp(, );
dres = n;
for (int i = ; i <= n; i++)
h[i] = ;
for (int k = n; k > ; k--) {
for (int i = ; i < (signed) upd[k].size(); i++)
update(upd[k][i].fi, upd[k][i].sc);
res += dres;
}
printf(Auto, res);
} int main() {
init();
solve();
return ;
}