14.LINUX-platform机制实现驱动层分离(详解)

时间:2023-03-09 16:47:07
14.LINUX-platform机制实现驱动层分离(详解)

本节目标:

       学习platform机制,如何实现驱动层分离


1.先来看看我们之前分析输入子系统的分层概念,如下图所示:

14.LINUX-platform机制实现驱动层分离(详解)

如上图所示,分层就是将一个复杂的工作分成了4层, 分而做之,降低难度,每一层专注于自己的事情, 系统只将其中的核心层和事件处理层写好了,所以我们只需要来写驱动层即可,接下来我们来分析platform机制以及分离概念

2.分离概念

优点:

  • 将所有设备挂接到一个虚拟的总线上,方便sysfs节点和设备电源的管理
  • 使得驱动代码,具有更好的扩展性和跨平台性,就不会因为新的平台而再次编写驱动

介绍:

分离就是在驱动层中使用platform机制把硬件相关的代码(固定的,如板子的网卡、中断地址)和驱动(会根据程序作变动,如点哪一个灯)分离开来,即要编写两个文件:dev.c和drv.c(platform设备和platform驱动)

3.platform机制

基本内容:

platform会存在/sys/bus/里面

如下图所示, platform目录下会有两个文件,分别就是platform设备和platform驱动

14.LINUX-platform机制实现驱动层分离(详解)

1) device设备

挂接在platform总线下的设备, platform_device结构体类型

2) driver驱动

挂接在platform总线下,是个与某种设备相对于的驱动, platform_driver结构体类型

3) platform总线

是个全局变量,为platform_bus_type,属于虚拟设备总线,通过这个总线将设备和驱动联系起来,属于Linux中bus的一种

该platform_bus_type的结构体定义如下所示(位于drivers/base):

struct bus_type platform_bus_type = {
.name = "platform", //设备名称
.dev_attrs = platform_dev_attrs, //设备属性、含获取sys文件名,该总线会放在/sys/bus下
.match = platform_match, //匹配设备和驱动,匹配成功就调用driver的.probe函数
.uevent = platform_uevent, //消息传递,比如热插拔操作
.suspend = platform_suspend, //电源管理的低功耗挂起
.suspend_late = platform_suspend_late,
.resume_early = platform_resume_early,
.resume = platform_resume,    //恢复
};

驱动、设备注册匹配图如下所示:

14.LINUX-platform机制实现驱动层分离(详解)

只要有一方注册,就会调用platform_bus_type的.match匹配函数,来找对方,成功就调用driver驱动结构体里的.probe函数来使总线将设备和驱动联系起来

4.实例-分析driver驱动:

我们以/drivers/input/keybard/gpio_keys.c内核自带的示例程序为例,

它的代码中只有driver驱动,因为是个示例程序,所以没有device硬件设备代码

4.1发现在gpio_keys.c中有1个全局变量driver驱动:

struct platform_driver gpio_keys_device_driver = {  //定义一个platform_driver类型驱动

    .probe      = gpio_keys_probe,                //设备的检测,当匹配成功就会调用这个函数(需要自己编写)
.remove = __devexit_p(gpio_keys_remove), //删除设备(需要自己编写)
.driver = {
.name = "gpio-keys", //驱动名称,用来与设备名称匹配用的
}
};

4.2然后来找找这个gpio_keys_device_driver被谁用到

发现在驱动层init入口函数中通过platform_driver_register()来注册diver驱动

在驱动层exit出口函数中通过platform_driver_unregister()函数来注销diver驱动

代码如下:

static int __init gpio_keys_init(void)    //init出口函数
{
return platform_driver_register(&gpio_keys_device_driver); //注册driver驱动
} static void __exit gpio_keys_exit(void) //exit出口函数
{
platform_driver_unregister(&gpio_keys_device_driver); //注销driver驱动
}

3.3我们进来platform_driver_register(),看它是如何注册diver的,注册到哪里?

platform_driver_register()函数如下:

int platform_driver_register(struct platform_driver *drv)
{
drv->driver.bus = &platform_bus_type; //(1)挂接到虚拟总线platform_bus_type上
if (drv->probe)
drv->driver.probe = platform_drv_probe;
if (drv->remove)
drv->driver.remove = platform_drv_remove;
if (drv->shutdown)
drv->driver.shutdown = platform_drv_shutdown;
if (drv->suspend)
drv->driver.suspend = platform_drv_suspend;
if (drv->resume)
drv->driver.resume = platform_drv_resume; return driver_register(&drv->driver); //(2) 注册到driver目录下
}

(1) 挂接到虚拟总线platform_bus_type上,然后会调用platform_bus_type下的platform_match匹配函数,来匹配device和driver的名字,其中driver的名字如下图所示:

14.LINUX-platform机制实现驱动层分离(详解)

platform_match()匹配函数如下所示:

static int platform_match(struct device * dev, struct device_driver * drv)
{
/*找到所有的device设备*/
struct platform_device *pdev = container_of(dev, struct platform_device, dev); return (strncmp(pdev->name, drv->name, BUS_ID_SIZE) == ); //找BUS_ID_SIZE次
}

若名字匹配成功,则调用device的.probe成员函数

(2)然后放到/sys/bus/platform/driver目录下,其中driver_register()函数就是用来创建dirver目录的

5. 使用platform机制,编写LED驱动层

首先创建设备代码和驱动代码:led_dev.c 、led_drv.c

led_dev.c用来指定灯的引脚地址,当更换平台时,只需要修改这个就行

led_drv.c用来初始化灯以及如何控制灯的逻辑,当更换控制逻辑时,只需要修改这个就行

6.编写led.dev.c

6.1编写led_dev.c之前先来看看platform_device结构体和要使用的函数:

platform_device结构体如下:

 struct platform_device {
const char * name; //设备名称,要与platform_driver的name一样,这样总线才能匹配成功
u32 id; //id号,插入总线下相同name的设备编号(一个驱动可以有多个设备),如果只有一个设备填-1
struct device dev; //内嵌的具体的device结构体,其中成员platform_data,是个void *类型,可以给平台driver提供各种数据(比如:GPIO引脚等等)
u32 num_resources; //资源数量,
struct resource * resource; //资源结构体,保存设备的信息
};

其中resource资源结构体,如下:

struct resource {
resource_size_t start; //起始资源,如果是地址的话,必须是物理地址
resource_size_t end; //结束资源,如果是地址的话,必须是物理地址
const char *name; //资源名
unsigned long flags; //资源的标志
//比如IORESOURCE_MEM,表示地址资源, IORESOURCE_IRQ表示中断引脚... ... struct resource *parent, *sibling, *child; //资源拓扑指针父、兄、子,可以构成链表
};

要用的函数如下,在dev设备的入口出口函数中用到

int platform_device_register(struct platform_device * pdev);       //注册dev设备
int platform_device_register(struct platform_device * pdev); //注销dev设备

6.2接下来开始写代码

1)先写要注册的led设备:platform_device结构体

#include <linux/module.h>
#include <linux/version.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/timer.h>
#include <linux/init.h>
#include <linux/serial_core.h>
#include <linux/platform_device.h> static struct resource led_resource[] = { //资源数组
[] = {
.start = 0x56000050, //led的寄存器GPFCON起始地址
.end = 0x56000050 + - , // led的寄存器GPFDAT结束地址
.flags = IORESOURCE_MEM, //表示地址资源
},
[] = {
.start = , //表示GPF第几个引脚开始
.end = , //结束引脚
.flags = IORESOURCE_IRQ, //表示中断资源
}
}; static void led_release(struct device * dev) //释放函数
{} static struct platform_device led_dev = {
.name = "myled", //对应的platform_driver驱动的名字
.id = -, //表示只有一个设备
.num_resources = ARRAY_SIZE(led_resource), //资源数量,ARRAY_SIZE()函数:获取数量
.resource = led_resource, //资源数组led_resource
.dev = {
.release = led_release, //释放函数,必须向内核提供一个release函数, 、
//否则卸载时,内核找不到该函数会报错
},
};

2)最后写出口入口函数:

static int led_dev_init(void)    //入口函数,注册dev设备
{
platform_device_register(&led_dev);
return ;
} static void led_dev_exit(void) //出口函数,注销dev设备
{
platform_device_unregister(&led_dev);
}
module_init(led_dev_init); //修饰入口函数
module_exit(led_dev_exit); //修饰出口函数
MODULE_LICENSE("GPL"); //声明函数

7.编写led.drv.c

7.1编写led_dev.c之前先来看看platform_device结构体和要使用的函数:

struct platform_driver {
int (*probe)(struct platform_device *); //查询设备的存在
int (*remove)(struct platform_device *); //删除
void (*shutdown)(struct platform_device *); //断电
int (*suspend)(struct platform_device *, pm_message_t state); //休眠
int (*suspend_late)(struct platform_device *, pm_message_t state);
int (*resume_early)(struct platform_device *);
int (*resume)(struct platform_device *); //唤醒
struct device_driver driver; //内嵌的driver,其中的name成员要等于设备的名称才能匹配 }; int platform_driver_register(struct platform_driver *drv); //注册驱动
platform_driver_unregister(struct platform_driver *drv); //卸载驱动 struct resource * platform_get_resource(struct platform_device *dev, unsigned int type,unsigned int num);
//获取设备的某个资源,获取成功,则返回一个resource资源结构体
//参数:
// *dev :指向某个platform device设备
// type:获取的资源类型
// num: type资源下的第几个数组

7.2接下来开始写代码

1)先写要注册的led驱动:platform_driver结构体

/*函数声明*/
static int led_remove(struct platform_device *led_dev);
static int led_probe(struct platform_device *led_dev); struct platform_driver led_drv = {
.probe = led_probe, //当与设备匹配,则调用该函数
.remove = led_remove, //删除设备 .driver = {
.name = "myled", //与设备名称一样
}
};

2)写file_operations 结构体、以及成员函数(.open、.write)、.probe函数、

当驱动和设备都insmod加载后,然后bus总线会匹配成功,就进入.probe函数,

在.probe函数中便使用platform_get_resource()函数获取LED的地址和引脚,然后初始化LED,并注册字符设备和设备节点"led"

static struct class *cls;                                      //类,用来注册,和注销
static volatile unsigned long *gpio_con; //被file_operations的.open函数用
static volatile unsigned long *gpio_dat; //被file_operations的.write函数用
static int pin; //LED位于的引脚值 static int led_open(struct inode *inode, struct file *file)
{
*GPFcon&=~(0x03<<(LED_PIN*));
*GPFcon|=(0x01<<(LED_PIN*));
return ;
} static ssize_t led_write(struct file *file, const char __user *buf, size_t count, loff_t * ppos)
{
int val=;
if(count!=)
return -EINAL;
copy_from_user(&val,buf,count); //从用户(应用层)拷贝数据 if(val) //开灯
{
*GPFdat&=~(0x1<<LED_PIN);
}
else
{
*GPFdat |= (0x1<<LED_PIN);
}
return ;
} static struct file_operations led_fops= {
.owner = THIS_MODULE, //被使用时阻止模块被卸载
.open = led_open,
.write = led_write,
}; static int led_probe(struct platform_device *pdev)
{
struct resource *res;
printk("enter probe\n"); /* 根据platform_device的资源进行ioremap */
res = platform_get_resource(pdev, IORESOURCE_MEM, ); //获取寄存器地址
gpio_con = ioremap(res->start, res->end - res->start + ); //获取虚拟地址
gpio_dat = gpio_con + ; res = platform_get_resource(pdev, IORESOURCE_IRQ, ); //获取引脚值
pin = res->start; /* 注册字符设备驱动程序 */
major = register_chrdev(, "myled", &led_fops); //赋入file_operations结构体
cls = class_create(THIS_MODULE, "myled");
class_device_create(cls, NULL, MKDEV(major, ), NULL, "led"); /* /dev/led */
return ;
}

3)写.remove函数

如果驱动与设备已联系起来,当卸载驱动时,就会调用.remove函数卸载设备

和.probe函数一样,注册了什么就卸载什么便可

static int led_remove(struct platform_device *pdev)
{
/* 卸载字符设备驱动程序 */
printk("enter remove\n");
class_device_destroy(cls, MKDEV(major, ));
class_destroy(cls);
unregister_chrdev(major, "myled"); iounmap(gpio_con); //注销虚拟地址
return ;
}

4)最后写drv的入口出口函数

static int led_drv_init(void)           //入口函数,注册驱动
{
platform_driver_register(&led_drv);
return 0;
}
static void led_drv_exit(void) //出口函数,卸载驱动
{
platform_driver_unregister(&led_drv);
} module_init(led_drv_init);
module_exit(led_drv_exit);
MODULE_LICENSE("GPL");

8.测试运行

1)如下图,我们先挂载dev设备模块,和我们之前分析的一样,它在platform/devices目录下生成一个"myled"设备

14.LINUX-platform机制实现驱动层分离(详解)

2)如下图,我们再来挂载drv驱动模块,同样的在platform/drivers目录下生成一个"myled"驱动,devices目录下的"myled"设备匹配成功,进入.probe函数创建设备,接下来就可以使用应用程序来控制led灯了

14.LINUX-platform机制实现驱动层分离(详解)

3)如下图,卸载驱动时,也会进入.remove函数卸载设备

14.LINUX-platform机制实现驱动层分离(详解)

接下来开始学习:

15.linux-LCD层次分析(详解)