vector向量容器(常用的使用方法总结)

时间:2021-01-12 05:13:17

关于STL中vector容器的学习,编译运行后边看代码,边看执行结果效果更佳,还是想说看别人的代码一百遍,不如自己动手写一遍。

vector向量容器不但能像数组一样对元素进行随机访问,还能随时在尾部插入元素,简单而高效,能够完全替代数组。

vector最大的亮点在于具有内存自动管理的功能,插入和删除元素时能够动态调整所占的内存空间。

值得注意的是,vector容器中的两个重要方法,begin()返回的是首元素位置的迭代器,end()返回的是最后一个元素的下一个元素位置的迭代器。

 //关于STL中vector容器的学习,编译运行后边看代码,边看执行结果效果更佳,不过看别人的代码一百遍,不如自己动手写一遍
#include <vector>//头文件
#include <iostream>
#include <algorithm>
using namespace std; void print(vector <int> v);
bool mycmpare(const int &a, const int &b){
return a>b;
}
int main ()
{
//创建vector对象三种常用的方式,此处存储元素类型是int,还可以是double、char、long long等基本数据类型,甚至是string基本字符序列容器
vector <int> v1;//不指定容器的元素个数的定义一个用来存储整型的向量容器
cout<<"v1:"<<endl;
print(v1);
/*运行结果
v1:
大小为:0
*/ vector <int> v2();//指定容器的元素个数的定义一个大小为10的用来存储整型的向量容器,默认初始化为0
cout<<"v2:"<<endl;
print(v2);
/*运行结果
v2:
大小为:5
0 0 0 0 0
*/ vector <int> v3(,);//也可指定初始值,此处指定为1
cout<<"v3:"<<endl;
print(v3);
/*运行结果
v3:
大小为:5
1 1 1 1 1
*/ //另外事先指定不指定大小都无所谓,指定了大小也可以随时使用push_back()对vector容器进行尾部扩张
v1.push_back();//向空的vector容器尾部扩张,追加元素为1
cout<<"v1:"<<endl;
print(v1);
v3.push_back();//向已有元素的vector容器尾部扩张,追加元素为2
cout<<"v3:"<<endl;
print(v3);
/*运行结果
v1:
大小为:1
1 v3:
大小为:6
1 1 1 1 1 2
*/ //插入元素使用insert()方法,要求插入的位置是迭代器的位置,而不是元素的下标
v3.insert(v3.begin(),);//在最前面插入3
cout<<"v3:"<<endl;
print(v3); v3.insert(v3.end(),);//在末尾追加3,此处等同于push_back()
cout<<"v3:"<<endl;
print(v3);
/*运行结果
v3:
大小为:7
3 1 1 1 1 1 2 v3:
大小为:8
3 1 1 1 1 1 2 3
*/ int i;
for(i=;i < v3.size();i++){//只可赋值到已扩张位置
v3[i]=i;
}
//要删除一个元素或者一个区间中的所有元素时使用erase()方法
v3.erase(v3.begin()+);//删除第2个元素,从0开始计数
cout<<"v3:"<<endl;
print(v3);
/*运行结果
v3:
大小为:7
0 1 3 4 5 6 7
*/
v3.erase(v3.begin()+,v3.begin()+);//删除第1个到第3个元素区间的所有元素
cout<<"v3:"<<endl;
print(v3);
/*运行结果
v3:
大小为:5
0 4 5 6 7
*/
//由结果可知,erase()方法同insert()方法一样,操作的位置都只是迭代器的位置,而不是元素的下标 //要想清空vector(),使用clear()方法一次性删除vector中的所有元素
cout<<"v2:"<<endl;
print(v2);
/*运行结果
v2:
大小为:5
0 0 0 0 0
*/
v2.clear();
if(v2.empty()) cout<<"v2经过使用clear()方法后为空\n";
print(v2);
/*运行结果
v2经过使用clear()方法后为空
大小为:0
*/ //要想将向量中某段迭代器区间元素反向排列,则使用reverse()反向排列算法,需要添加algorithm头文件
cout<<"v3反向排列前:"<<endl;
print(v3);
reverse(v3.begin(),v3.end());//全部反向排列
cout<<"v3反向排列后:"<<endl;
print(v3);
/*运行结果
v3反向排列前:
大小为:5
0 4 5 6 7 v3反向排列后:
大小为:5
7 6 5 4 0
*/ //要想将向量中某段迭代器区间元素进行排序,则使用sort()算法
cout<<"v3升序排列前:"<<endl;
print(v3);
sort(v3.begin(),v3.end());//默认升序排列
cout<<"v3升序排列后:"<<endl;
print(v3);
/*运行结果
v3升序排列前:
大小为:5
7 6 5 4 0 v3升序排列后:
大小为:5
0 4 5 6 7
*/ //自定义排序比较函数,此处降序
cout<<"v3降序排列前:"<<endl;
print(v3);
sort(v3.begin(),v3.end(),mycmpare);
cout<<"v3降序排列后:"<<endl;
print(v3);
/*运行结果
v3降序排列前:
大小为:5
0 4 5 6 7 v3降序排列后:
大小为:5
7 6 5 4 0
*/
} void print(vector <int> v)
{
//cout<<"下标方式访问:"<<endl;
cout<<"大小为:"<<v.size()<<endl;
int i;
for(i=;i< v.size();i++){
cout<<v[i]<<' ';
}
cout<<endl<<endl; /*cout<<"用迭代器访问:"<<endl;
//定义迭代器变量it,类型与容器元素类型保持一致
vector<int>::iterator it;
for(it=v.begin(); it != v.end(); it++){
cout<<*it<<' ';
}
cout<<endl<<endl;*/
}