Scalaz(45)- concurrency :Task-函数式多线程编程核心配件

时间:2023-03-09 17:25:53
Scalaz(45)- concurrency :Task-函数式多线程编程核心配件

我们在上一节讨论了scalaz Future,我们说它是一个不完善的类型,最起码没有完整的异常处理机制,只能用在构建类库之类的内部环境。如果scalaz在Future类定义中增加异常处理工具的话,用户就会经常遇到Future[Throwable\/A]这样的类型,那么在进行Monadic编程时就必须使用Monad Transformer来匹配类型,程序就会变得不必要的复杂。scalaz的解决方案就是把Future[Throwable\/A]包嵌在Task类里,然后把所有Future都统一升格成Task。Task是个Monad, 这样,我们就可以统一方便地用Task来进行多线程函数式编程了。我们先看看Task的定义:scalaz.concurrent/Task.scala

class Task[+A](val get: Future[Throwable \/ A]) {

  def flatMap[B](f: A => Task[B]): Task[B] =
new Task(get flatMap {
case -\/(e) => Future.now(-\/(e))
case \/-(a) => Task.Try(f(a)) match {
case e @ -\/(_) => Future.now(e)
case \/-(task) => task.get
}
}) def map[B](f: A => B): Task[B] =
new Task(get map { _ flatMap {a => Task.Try(f(a))} })
...

Task实现了flatMap,所以是个Monad,我们可以在for-comprehension中使用Task。

Task的构建方式与Future一样:

 val tnow = Task.now { println("run now ..."); + }
//> run now ...
//| tnow : scalaz.concurrent.Task[Int] = scalaz.concurrent.Task@1a968a59
val tdelay = Task.delay { println("run delay ..."); + }
//> tdelay : scalaz.concurrent.Task[Int] = scalaz.concurrent.Task@13deb50e
val tapply = Task { println("run apply ..."); + }
//> tapply : scalaz.concurrent.Task[Int] = scalaz.concurrent.Task@59494225

同样,now函数是即时运算的。它就是一个lifter,能把一个普通运算直接升格为Task。

针对Task有几种运算方法:

 tnow.unsafePerformSync                            //> res0: Int = 7
tdelay.unsafePerformSync //> run delay ...
//| res1: Int = 7
tnow.unsafePerformAsync {
case \/-(a) => println(s"the result is: $a")
case -\/(e) => println(e.getMessage)
} //> the result is: 7
tdelay.unsafePerformAsync {
case \/-(a) => println(s"the result is: $a")
case -\/(e) => println(e.getMessage)
} //> run delay ...
//| the result is: 7
tapply.unsafePerformAsync {
case \/-(a) => println(s"the result is: $a")
case -\/(e) => println(e.getMessage)
}
Thread.sleep() //> run apply ...
//| the result is: 7

从上面的例子我们可以得出:tnow已经完成了运算,因为运算结果没有"run now ..."提示了。tdelay和tapply都是存在trampoline结构里的。但tapply存在更深一层的结构里,所以我们必须拖时间来等待tapply的运算结果。tdelay存放在Future.Suspend结构里,而tapply是存放在Future.Async结构里的,所以tdelay是一种延迟运算,而tapply就是异步运算了:

 def delay[A](a: => A): Task[A] = suspend(now(a))
def suspend[A](a: => Task[A]): Task[A] = new Task(Future.suspend(
Try(a.get) match {
case -\/(e) => Future.now(-\/(e))
case \/-(f) => f
}))
//Future.suspend:
def suspend[A](f: => Future[A]): Future[A] = Suspend(() => f) def apply[A](a: => A)(implicit pool: ExecutorService = Strategy.DefaultExecutorService): Task[A] =
new Task(Future(Try(a))(pool))
//Future.apply
def apply[A](a: => A)(implicit pool: ExecutorService = Strategy.DefaultExecutorService): Future[A] = Async { cb =>
pool.submit { new Callable[Unit] { def call = cb(a).run }}
}

好了,我们再看看Task是怎样处理异常情况的:

 def eval(value: => Int) = Task { Thread.sleep(); value }
//> eval: (value: => Int)scalaz.concurrent.Task[Int]
eval( * ).onFinish {
case None => Task { println("finished calculation successfully.") }
case Some(e) => Task { println(s"caught error [${e.getMessage}]") }
}.unsafePerformSyncAttempt match {
case -\/(e) => println(s"calculation error [${e.getMessage}]")
case \/-(a) => println(s"the result is: $a")
} //> finished calculation successfully.
//| the result is: 21
// 异常处理
eval( * / ).onFinish {
case None => Task { println("finished calculation successfully.") }
case Some(e) => Task { println(s"caught error [${e.getMessage}]") }
}.unsafePerformAsync {
case -\/(e) => println(s"calculation error [${e.getMessage}]")
case \/-(a) => println(s"the result is: $a")
}
Thread.sleep() //> caught error [/ by zero]
//| calculation error [/ by zero]

精准异常处理例子:

 import java.util.concurrent._
val timedTask = Task {Thread.sleep(); +}
//> timedTask : scalaz.concurrent.Task[Int] = scalaz.concurrent.Task@3d921e20
timedTask.timed( second).handleWith {
case e: TimeoutException => Task { println(s"calculation exceeding time limit: ${e.getMessage}") }
}.unsafePerformSync //> calculation exceeding time limit: Timed out after 1000 milliseconds
//| res2: AnyVal{def getClass(): Class[_ >: Int with Unit <: AnyVal]} = ()

再看一些多线程编程例子:

 val tasks = ( |-> ).map(n => Task{ Thread.sleep(); n })
//> tasks : List[scalaz.concurrent.Task[Int]] = List(scalaz.concurrent.Task@61
//| 8b19ad, scalaz.concurrent.Task@2d3379b4, scalaz.concurrent.Task@30c15d8b, s
//| calaz.concurrent.Task@5e0e82ae, scalaz.concurrent.Task@6771beb3)
//并行运算list of tasks
Task.gatherUnordered(tasks).unsafePerformSync //> res3: List[Int] = List(1, 2, 3, 4, 5)
val sb = new StringBuffer //> sb : StringBuffer =
val t1 = Task.fork { Thread.sleep(); sb.append("a"); Task.now("a")}
//> t1 : scalaz.concurrent.Task[String] = scalaz.concurrent.Task@6200f9cb
val t2 = Task.fork { Thread.sleep(); sb.append("b"); Task.now("b")}
//> t2 : scalaz.concurrent.Task[String] = scalaz.concurrent.Task@2002fc1d
val t3 = Task.fork { Thread.sleep(); sb.append("c"); Task.now("c")}
//> t3 : scalaz.concurrent.Task[String] = scalaz.concurrent.Task@69453e37
val t4 = Task.fork { Thread.sleep(); sb.append("d"); Task.now("d")}
//> t4 : scalaz.concurrent.Task[String] = scalaz.concurrent.Task@6f4a47c7
val t5 = Task.fork { Thread.sleep(); sb.append("e"); Task.now("e")}
//> t5 : scalaz.concurrent.Task[String] = scalaz.concurrent.Task@ae13544
val t6 = Task.fork { Thread.sleep(); sb.append("f"); Task.now("f")}
//> t6 : scalaz.concurrent.Task[String] = scalaz.concurrent.Task@3d34d211
val r = Nondeterminism[Task].nmap6(t1,t2,t3,t4,t5,t6)(List(_,_,_,_,_,_))
//> r : scalaz.concurrent.Task[List[String]] = scalaz.concurrent.Task@394df057
r.unsafePerformSync //> res4: List[String] = List(a, b, c, d, e, f)

看个耗时算法的并行运算吧:

 def seqFib(n: Int): Task[Int] =  n match {
case | => Task now
case n => {
for {
x <- seqFib(n-)
y <- seqFib(n-)
} yield x + y
}
} //> seqFib: (n: Int)scalaz.concurrent.Task[Int]
//并行算法
def parFib(n: Int): Task[Int] = n match {
case | => Task now
case n => {
val ND = Nondeterminism[Task]
for {
pair <- ND.both(parFib(n-), parFib(n-))
(x,y) = pair
} yield x + y
}
} //> parFib: (n: Int)scalaz.concurrent.Task[Int]
def msFib(n: Int, fib: Int => Task[Int]) = for {
b <- Task now { System.currentTimeMillis() }
a <- fib(n)
e <- Task now { System.currentTimeMillis() }
} yield (a, (e-b)) //> msFib: (n: Int, fib: Int => scalaz.concurrent.Task[Int])scalaz.concurrent.T
//| ask[(Int, Long)] msFib(, parFib).unsafePerformSync //> res3: (Int, Long) = (10946,373)
msFib(, seqFib).unsafePerformSync //> res4: (Int, Long) = (10946,17)

哎呀!奇怪了,为什么并行算法要慢很多呢?这个问题暂且放一放,以后再研究。当然,如果有读者能给出个解释就太感激了。
Task的线程池是如何分配的呢?看看Task.apply和Task.fork:

 /** Create a `Task` that will evaluate `a` using the given `ExecutorService`. */
def apply[A](a: => A)(implicit pool: ExecutorService = Strategy.DefaultExecutorService): Task[A] =
new Task(Future(Try(a))(pool))
def fork[A](a: => Task[A])(implicit pool: ExecutorService = Strategy.DefaultExecutorService): Task[A] =
apply(a).join
//Future.apply
/** Create a `Future` that will evaluate `a` using the given `ExecutorService`. */
def apply[A](a: => A)(implicit pool: ExecutorService = Strategy.DefaultExecutorService): Future[A] = Async { cb =>
pool.submit { new Callable[Unit] { def call = cb(a).run }}

这两个函数都包括了一个隐式参数implicit pool: ExecutorService。默认值是Strategy.DefultExecutorService。我们可以这样指定线程池:

  Task {longProcess}(myExecutorService)
Task.fork { Task {longProcess} }(myExecutorService)

下面是一个动态指定线程池的例子:

 import java.util.concurrent.{ExecutorService,Executors}
type Delegated[A] = Kleisli[Task,ExecutorService,A]
def delegate: Delegated[ExecutorService] = Kleisli(e => Task.now(e))
//> delegate: => demo.ws.task.Delegated[java.util.concurrent.ExecutorService]
implicit def delegateTaskToPool[A](ta: Task[A]): Delegated[A] = Kleisli(x => ta)
//> delegateTaskToPool: [A](ta: scalaz.concurrent.Task[A])demo.ws.task.Delegated[A]
val tPrg = for {
p <- delegate
b <- Task("x")(p)
c <- Task("y")(p)
} yield c //> tPrg : scalaz.Kleisli[scalaz.concurrent.Task,java.util.concurrent.Executor
//| Service,String] = Kleisli(<function1>)
tPrg.run(Executors.newFixedThreadPool()).unsafePerformSync
//> res3: String = y

当然,Task和scala Future之间是可以相互转换的:

 import scala.concurrent.{Future => sFuture}
import scala.util.{Success,Failure}
import scala.concurrent.ExecutionContext
def futureToTask[A](fut: sFuture[A])(implicit ec: ExecutionContext): Task[A] =
Task.async {
cb =>
fut.onComplete {
case Success(a) => cb(a.right)
case Failure(e) => cb(e.left)
}
}
def taskToFuture[A](ta: Task[A]): sFuture[A] = {
val prom = scala.concurrent.Promise[A]
ta.unsafePerformAsync {
case -\/(e) => prom.failure(e)
case \/-(a) => prom.success(a)
}
prom.future
}

与Future不同的是:Task增加了异常处理机制。