金字塔Lucas-Kanande光流算法实现

时间:2023-03-08 23:25:35
金字塔Lucas-Kanande光流算法实现
// Lucas-Kanade method Optical Flow in OpenCV
// BJTShang, 2016-12-13 #include <cv.h>
#include <cxcore.h>
#include <highgui.h> const int MAX_CORNERS = 500; int main(int argc, char** argv){
IplImage* imgA = cvLoadImage("/home/bjtshang/cpp_ws/opencv/data/OpticalFlow0.jpg",
CV_LOAD_IMAGE_GRAYSCALE);
IplImage* imgB = cvLoadImage("/home/bjtshang/cpp_ws/opencv/data/OpticalFlow1.jpg",
CV_LOAD_IMAGE_GRAYSCALE); // image to show the optical flow vectors
IplImage* imgC = cvLoadImage("/home/bjtshang/Desktop/OpticalFlow1.jpg",
CV_LOAD_IMAGE_UNCHANGED); CvSize img_size = cvGetSize(imgA);
CvSize win_size = cvSize(50, 50);
int corner_count = MAX_CORNERS; // get the features (detect corners) need to be tracked
IplImage* imgEig = cvCreateImage(img_size, IPL_DEPTH_32F, 1);
IplImage* imgTmp = cvCreateImage(img_size, IPL_DEPTH_32F, 1); CvPoint2D32f* cornersA = new CvPoint2D32f[corner_count]; cvGoodFeaturesToTrack(imgA, imgEig, imgTmp, cornersA, &corner_count,
0.02, 8.0, 0, 3, 0, 0.04); // find sub-pixel corners
cvFindCornerSubPix(imgA, cornersA, corner_count,
win_size, cvSize(-1,-1),
cvTermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS, 20, 0.1)); char features_found[MAX_CORNERS];
float feature_errors[MAX_CORNERS]; CvSize pyr_size = cvSize(imgA->width+8, imgB->height/3); IplImage* pyrA = cvCreateImage(pyr_size, IPL_DEPTH_32F, 1);
IplImage* pyrB = cvCreateImage(pyr_size, IPL_DEPTH_32F, 1); CvPoint2D32f* cornersB = new CvPoint2D32f[MAX_CORNERS]; cvCalcOpticalFlowPyrLK(imgA, imgB, pyrA, pyrB, cornersA, cornersB,
corner_count, win_size,
10, features_found, feature_errors,
cvTermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS, 20, 0.1),
0
); for(int i=0; i<corner_count; i++){
if(features_found[i]==0 || feature_errors[i] > 550){
printf("Error is: %f\n", feature_errors[i]);
continue;
}
//printf("Got it\n");
CvPoint p1 = cvPoint(cvRound(cornersA[i].x), cvRound(cornersA[i].y));
CvPoint p2 = cvPoint(cvRound(cornersB[i].x), cvRound(cornersB[i].y));
cvLine(imgC, p1, p2, CV_RGB(255, 0, 0), 1);
}
cvNamedWindow("imgA", 0);
cvNamedWindow("imgB", 0);
cvNamedWindow("Optical_flow", 0);
cvShowImage("imgA", imgA);
cvShowImage("imgB", imgB);
cvShowImage("Optical_flow", imgC); cvWaitKey(0);
return 0;
}