[IOI2018] werewolf 狼人 kruskal重构树,主席树

时间:2023-03-09 19:08:19
[IOI2018] werewolf 狼人 kruskal重构树,主席树

[IOI2018] werewolf 狼人

LG传送门

kruskal重构树好题。

日常安利博客文章

这题需要搞两棵重构树出来,这两棵重构树和我们平时见过的重构树有点不同(据说叫做点权重构树?),根据经过我们简化的建树方法,这两棵树不再是二叉树,但是仍具有kruskal重构树的优秀性质,建议结合后面的描述理解。

看这题需要首先我们从\(S\)走到\(T\)转化为分别从\(S\)和\(T\)出发寻找能共同到达的点,需要快速求出从某个点出发经过点权不大(小)于\(r\)(\(l\))的点,考虑kruskal重构树。令每条边的的边权为所连接两点的较大(小)值,造两棵重构树,这样就可以像平时一样直接倍增做了,但是我们发现边权的信息实际上就是点权的信息,于是我们在建新树时就不另建新点了,这就是所谓的“点权重构树”。建出树处理倍增之后,我们的问题就变成了查询两棵树上两棵子树是否有交,用dfs序表达就是一个简单的二维数点的问题,直接主席树。

#include <cstdio>
#include <cctype>
#include <vector>
#define R register
#define I inline
#define B 1000000
using namespace std;
const int N = 200003;
char buf[B], *p1, *p2;
I char gc() { return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, B, stdin), p1==p2) ? EOF : *p1++; }
I int rd() {
R int f = 0;
R char c = gc();
while (c < 48 || c > 57) c = gc();
while (c > 47 && c < 58) f = f * 10 + (c ^ 48), c = gc();
return f;
}
int s[N], rt[N], val[N], T;
vector <int> g[N];
struct edge { int g, s; };
struct segtree { int p, q, s; }e[N << 5];
struct kruskal {
int h[N], f[N], fa[N][20], dfn[N], low[N], E, tim;
edge e[N];
I void add(int x, int y) { e[++E] = (edge){y, h[x]}, h[x] = E; }
I int find(int x) {
R int r = x, y;
while (f[r] ^ r)
r = f[r];
while (x ^ r)
y = f[x], f[x] = r, x = y;
return r;
}
void dfs(int x) {
dfn[x] = ++tim;
R int i;
for (i = 1; i < 20; ++i)
fa[x][i] = fa[fa[x][i - 1]][i - 1];
for (i = h[x]; i; i = e[i].s)
dfs(e[i].g);
low[x] = tim;
}
}X, Y;
int modify(int k, int l, int r, int x) {
R int t = ++T;
e[t].p = e[k].p, e[t].q = e[k].q, e[t].s = e[k].s + 1;
if (l == r)
return t;
R int m = l + r >> 1;
if (x <= m)
e[t].p = modify(e[k].p, l, m, x);
else
e[t].q = modify(e[k].q, m + 1, r, x);
return t;
}
int query(int k, int t, int l, int r, int x, int y) {
if (x <= l && r <= y)
return e[t].s - e[k].s;
R int m = l + r >> 1, o = 0;
if (x <= m)
o += query(e[k].p, e[t].p, l, m, x, y);
if (m < y)
o += query(e[k].q, e[t].q, m + 1, r, x, y);
return o;
}
int main() {
R int n = rd(), m = rd(), Q = rd(), i, x, y, l, r;
for (i = 1; i <= m; ++i)
x = rd() + 1, y = rd() + 1, g[x].push_back(y), g[y].push_back(x);
for (i = 1; i <= n; ++i)
X.f[i] = i, Y.f[i] = i, s[i] = g[i].size();
for (x = n; x; --x)
for (i = 0; i < s[x]; ++i)
if (g[x][i] > x && (y = X.find(g[x][i])) ^ x)
X.add(x, y), X.f[y] = X.fa[y][0] = x;
for (x = 1; x <= n; ++x)
for (i = 0; i < s[x]; ++i)
if (g[x][i] < x && (y = Y.find(g[x][i])) ^ x)
Y.add(x, y), Y.f[y] = Y.fa[y][0] = x;
X.dfs(1), Y.dfs(n);
for (i = 1; i <= n; ++i)
val[X.dfn[i]] = Y.dfn[i];
for (i = 1; i <= n; ++i)
rt[i] = modify(rt[i - 1], 1, n, val[i]);
while (Q--) {
x = rd() + 1, y = rd() + 1, l = rd() + 1, r = rd() + 1;
for (i = 19; ~i; --i)
if (X.fa[x][i] >= l)
x = X.fa[x][i];
for (i = 19; ~i; --i)
if (Y.fa[y][i] && Y.fa[y][i] <= r)
y = Y.fa[y][i];
printf(query(rt[X.dfn[x] - 1], rt[X.low[x]], 1, n, Y.dfn[y], Y.low[y]) ? "1\n" : "0\n");
}
return 0;
}