SPFA 算法实例讲解

时间:2022-09-21 21:17:56

适用范围:给定的图存在负权边,这时类似dijkstra等算法便没有了用武之地,而bellman-ford算法的复杂度又过高,spfa算法便 派上用场了。 我们约定有向加权图g不存在负权回路,即最短路径一定存在。当然,我们可以在执行该算法前做一次拓扑排序,以判断是否存在负权回路,但这不是我们讨论的重 点。

算法思想:我们用数组d记录每个结点的最短路径估计值,用邻接表来存储图g。我们采取的方法是动态逼近法:设立一个先进先出的队列用来保存待优化的 结点,优化时每次取出队首结点u,并且用u点当前的最短路径估计值对离开u点所指向的结点v进行松弛操作,如果v点的最短路径估计值有所调整,且v点不在 当前的队列中,就将v点放入队尾。这样不断从队列中取出结点来进行松弛操作,直至队列空为止

期望的时间复杂度o(ke), 其中k为所有顶点进队的平均次数,可以证明k一般小于等于2。

实现方法:

建立一个队列,初始时队列里只有起始点,再建立一个表格记录起始点到所有点的最短路径(该表格的初始值要赋为极大值,该点到他本身的路径赋为 0)。然后执行松弛操作,用队列里有的点作为起始点去刷新到所有点的最短路,如果刷新成功且被刷新点不在队列中则把该点加入到队列最后。重复执行直到队列 为空。

判断有无负环:

如果某个点进入队列的次数超过n次则存在负环(spfa无法处理带负环的图)

SPFA 算法实例讲解

首先建立起始点a到其余各点的

最短路径表格

SPFA 算法实例讲解

首先源点a入队,当队列非空时:

1、队首元素(a)出队,对以a为起始点的所有边的终点依次进行松弛操作(此处有b,c,d三个点),此时路径表格状态为:

SPFA 算法实例讲解

在松弛时三个点的最短路径估值变小了,而这些点队列中都没有出现,这些点
需要入队,此时,队列中新入队了三个结点b,c,d

队首元素b点出队,对以b为起始点的所有边的终点依次进行松弛操作(此处只有e点),此时路径表格状态为:

SPFA 算法实例讲解

在最短路径表中,e的最短路径估值也变小了,e在队列中不存在,因此e也要
入队,此时队列中的元素为c,d,e

队首元素c点出队,对以c为起始点的所有边的终点依次进行松弛操作(此处有e,f两个点),此时路径表格状态为:

SPFA 算法实例讲解

在最短路径表中,e,f的最短路径估值变小了,e在队列中存在,f不存在。因此
e不用入队了,f要入队,此时队列中的元素为d,e,f

队首元素d点出队,对以d为起始点的所有边的终点依次进行松弛操作(此处只有g这个点),此时路径表格状态为:

SPFA 算法实例讲解

在最短路径表中,g的最短路径估值没有变小(松弛不成功),没有新结点入队,队列中元素为f,g

队首元素f点出队,对以f为起始点的所有边的终点依次进行松弛操作(此处有d,e,g三个点),此时路径表格状态为:


SPFA 算法实例讲解

在最短路径表中,e,g的最短路径估值又变小,队列中无e点,e入队,队列中存在g这个点,g不用入队,此时队列中元素为g,e

队首元素g点出队,对以g为起始点的所有边的终点依次进行松弛操作(此处只有b点),此时路径表格状态为:

SPFA 算法实例讲解

在最短路径表中,b的最短路径估值又变小,队列中无b点,b入队,此时队列中元素为e,b
队首元素e点出队,对以e为起始点的所有边的终点依次进行松弛操作(此处只有g这个点),此时路径表格状态为:

SPFA 算法实例讲解

在最短路径表中,g的最短路径估值没变化(松弛不成功),此时队列中元素为b

队首元素b点出队,对以b为起始点的所有边的终点依次进行松弛操作(此处只有e这个点),此时路径表格状态为:

SPFA 算法实例讲解

在最短路径表中,e的最短路径估值没变化(松弛不成功),此时队列为空了

最终a到g的最短路径为14

java代码

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
package spfa负权路径;
 
import java.awt.list;
import java.util.arraylist;
import java.util.scanner;
public class spfa {
 /**
  * @param args
  */
 public long[] result;   //用于得到第s个顶点到其它顶点之间的最短距离
 //数组实现邻接表存储
 class edge{
  public int a;//边的起点
  public int b;//边的终点
  public int value;//边的值
  public edge(int a,int b,int value){
   this.a=a;
   this.b=b;
   this.value=value;
  }
 }
 public static void main(string[] args) {
  // todo auto-generated method stub
  spfa spafa=new spfa();
  scanner scan=new scanner(system.in);
  int n=scan.nextint();
  int s=scan.nextint();
  int p=scan.nextint();
  edge[] a=new edge[p];
  for(int i=0;i<p;i++){
   int a=scan.nextint();
   int b=scan.nextint();
   int value=scan.nextint();
   a[i]=spafa.new edge(a,b,value);
  }
  if(spafa.getshortestpaths(n,s,a)){
   for(int i=0;i<spafa.result.length;i++){
    system.out.println(spafa.result[i]+" ");
   }
  }else{
   system.out.println("存在负环");
  }
 }
 /*
  * 参数n:给定图的顶点个数
  * 参数s:求取第s个顶点到其它所有顶点之间的最短距离
  * 参数edge:给定图的具体边
  * 函数功能:如果给定图不含负权回路,则可以得到最终结果,如果含有负权回路,则不能得到最终结果
  */
 private boolean getshortestpaths(int n, int s, edge[] a) {
  // todo auto-generated method stub
  arraylist<integer> list = new arraylist<integer>();
  result=new long[n];
  boolean used[]=new boolean[n];
  int num[]=new int[n];
  for(int i=0;i<n;i++){
   result[i]=integer.max_value;
   used[i]=false;
  }
  result[s]=0;//第s个顶点到自身距离为0
  used[s]=true;//表示第s个顶点进入数组队
  num[s]=1;//表示第s个顶点已被遍历一次
  list.add(s); //第s个顶点入队
  while(list.size()!=0){
   int a=list.get(0);//获取数组队中第一个元素
   list.remove(0);//删除数组队中第一个元素
   for(int i=0;i<a.length;i++){
   //当list数组队的第一个元素等于边a[i]的起点时
    if(a==a[i].a&&result[a[i].b]>(result[a[i].a]+a[i].value)){
     result[a[i].b]=result[a[i].a]+a[i].value;
     if(!used[a[i].b]){
      list.add(a[i].b);
      num[a[i].b]++;
      if(num[a[i].b]>n){
       return false;
      }
      used[a[i].b]=true;//表示边a[i]的终点b已进入数组队
     }
    }
   }
   used[a]=false; //顶点a出数组对
  }
  return true;
 }
}

以上这篇spfa 算法实例讲解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。