回归算法比较(线性回归,Ridge回归,Lasso回归)

时间:2023-11-10 20:05:02

代码实现:

 # -*- coding: utf-8 -*-
"""
Created on Mon Jul 16 09:08:09 2018 @author: zhen
""" from sklearn.linear_model import LinearRegression, Ridge, Lasso
import mglearn
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import numpy as np
# 线性回归
x, y = mglearn.datasets.load_extended_boston()
x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=0) linear_reg = LinearRegression()
lr = linear_reg.fit(x_train, y_train) print("lr.coef_:{}".format(lr.coef_)) # 斜率
print("lr.intercept_:{}".format(lr.intercept_)) # 截距 print("="*25+"线性回归"+"="*25)
print("Training set score:{:.2f}".format(lr.score(x_train, y_train)))
print("Rest set score:{:.2f}".format(lr.score(x_test, y_test))) """
总结:
训练集和测试集上的分数非常接近,这说明可能存在欠耦合。
训练集和测试集之间的显著性能差异是过拟合的明显标志。解决方式是使用岭回归!
"""
print("="*25+"岭回归(默认值1.0)"+"="*25)
# 岭回归
ridge = Ridge().fit(x_train, y_train) print("Training set score:{:.2f}".format(ridge.score(x_train, y_train)))
print("Test set score:{:.2f}".format(ridge.score(x_test, y_test))) print("="*25+"岭回归(alpha=10)"+"="*25)
# 岭回归
ridge_10 = Ridge(alpha=10).fit(x_train, y_train) print("Training set score:{:.2f}".format(ridge_10.score(x_train, y_train)))
print("Test set score:{:.2f}".format(ridge_10.score(x_test, y_test))) print("="*25+"岭回归(alpha=0.1)"+"="*25)
# 岭回归
ridge_01 = Ridge(alpha=0.1).fit(x_train, y_train) print("Training set score:{:.2f}".format(ridge_01.score(x_train, y_train)))
print("Test set score:{:.2f}".format(ridge_01.score(x_test, y_test))) # 可视化
fig = plt.figure(10)
plt.subplots_adjust(wspace =0, hspace =0.6)#调整子图间距
ax1 = plt.subplot(2, 1, 1) ax2 = plt.subplot(2, 1, 2) ax1.plot(ridge_01.coef_, 'v', label="Ridge alpha=0.1")
ax1.plot(ridge.coef_, 's', label="Ridge alpha=1")
ax1.plot(ridge_10.coef_, '^', label="Ridge alpha=10") ax1.plot(lr.coef_, 'o', label="LinearRegression") ax1.set_ylabel("Cofficient magnitude")
ax1.set_ylim(-25,25)
ax1.hlines(0, 0, len(lr.coef_))
ax1.legend(ncol=2, loc=(0.1, 1.05)) print("="*25+"Lasso回归(默认配置)"+"="*25)
lasso = Lasso().fit(x_train, y_train) print("Training set score:{:.2f}".format(lasso.score(x_train, y_train)))
print("Test set score:{:.2f}".format(lasso.score(x_test, y_test)))
print("Number of features used:{}".format(np.sum(lasso.coef_ != 0))) print("="*25+"Lasso回归(aplpha=0.01)"+"="*25)
lasso_001 = Lasso(alpha=0.01, max_iter=1000).fit(x_train, y_train) print("Training set score:{:.2f}".format(lasso_001.score(x_train, y_train)))
print("Test set score:{:.2f}".format(lasso_001.score(x_test, y_test)))
print("Number of features used:{}".format(np.sum(lasso_001.coef_ != 0))) print("="*15+"Lasso回归(aplpha=0.0001)太小可能会过拟合"+"="*15)
lasso_00001 = Lasso(alpha=0.0001, max_iter=1000).fit(x_train, y_train) print("Training set score:{:.2f}".format(lasso_00001.score(x_train, y_train)))
print("Test set score:{:.2f}".format(lasso_00001.score(x_test, y_test)))
print("Number of features used:{}".format(np.sum(lasso_00001.coef_ != 0))) # 可视化
ax2.plot(ridge_01.coef_, 'o', label="Ridge alpha=0.1")
ax2.plot(lasso.coef_, 's', label="lasso alpha=1")
ax2.plot(lasso_001.coef_, '^', label="lasso alpha=0.001")
ax2.plot(lasso_00001.coef_, 'v', label="lasso alpha=0.00001") ax2.set_ylabel("Cofficient magnitude")
ax2.set_xlabel("Coefficient index")
ax2.set_ylim(-25,25)
ax2.legend(ncol=2, loc=(0.1, 1))

结果:

回归算法比较(线性回归,Ridge回归,Lasso回归)

回归算法比较(线性回归,Ridge回归,Lasso回归)

回归算法比较(线性回归,Ridge回归,Lasso回归)

总结:各回归算法在相同的测试数据中表现差距很多,且算法内的配置参数调整对自身算法的效果影响也是巨大的,

  因此合理挑选合适的算法和配置合适的配置参数是使用算法的关键!